[证明] NP-完全问题

算法概论(注释版)第八章 Exercise 8.3


题目描述

STINGY SAT is the following problem: given a set of clauses(each a disjunction of literals) and an

integer k, find a satisfying assignment in which at most k variables are true, if such an assignment

exists. Prove that STINGY SAT is NP-complete.


吝啬SAT问题是这样的:给定一组句子(每个子句都是其中文字的析取)和整数k,求一个最多有

k个变量为true的满足赋值(如果存在),证明吝啬SAT是NP-完全问题。


解题思路

要证明一个问题是NP-完全问题,需要证明以下两点:

1. 该问题本身是一个NP问题;

2. 其他属于NP的问题都可以规约成该问题。


证明

证明第一点:为了找到一个最多有k个变量为true的满足赋值,可以依次判断每个子句中的变量个数

是否最多为k,这个判断可以在多项式时间内完成。因此,吝啬SAT是一个NP问题。


证明第二点:由于已知所有的NP问题都可以被归约为SAT问题,因此只需要证明SAT问题可以被归约

吝啬SAT问题即可。


假设E是SAT的一个实例,若E中变量的总数为k,则(E, K)是吝啬SAT问题的一个实例。给定(E, K)的一

解S,则若S中至多有k个变量为true,则S也是E的解。因此,吝啬SAT的解也是SAT的解。从而,SAT问题

约为吝啬SAT问题。


综上,证得:吝啬SAT问题是一个NP-完全问题。


  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值