史上最牛最全分库分表方案!

一、数据库瓶颈

不管是IO瓶颈,还是CPU瓶颈,最终都会导致数据库的活跃连接数增加,进而逼近甚至达到数据库可承载活跃连接数的阈值。

在业务Service来看就是,可用数据库连接少甚至无连接可用。接下来就可以想象了吧(并发量、吞吐量、崩溃)。

1、IO瓶颈

第一种:磁盘读IO瓶颈,热点数据太多,数据库缓存放不下,每次查询时会产生大量的IO,降低查询速度 -> 分库和垂直分表

第二种:网络IO瓶颈,请求的数据太多,网络带宽不够 -> 分库

2、CPU瓶颈

第一种:SQL问题,如SQL中包含join,group by,order by,非索引字段条件查询等,增加CPU运算的操作 -> SQL优化,建立合适的索引,在业务Service层进行业务计算。

第二种:单表数据量太大,查询时扫描的行太多,SQL效率低,CPU率先出现瓶颈 -> 水平分表

二、分库分表

1、水平分库

1.概念:以字段为依据,按照一定策略(hash、range等),将一个中的数据拆分到多个中。

2.结果:

  • 每个结构都一样;

  • 每个数据都不一样,没有交集;

  • 所有并集是全量数据;

3.场景:系统绝对并发量上来了,分表难以根本上解决问题,并且还没有明显的业务归属来垂直分库。

4.分析:库多了,io和cpu的压力自然可以成倍缓解。

2、水平分表

1.概念:以字段为依据,按照一定策略(hash、range等),将一个中的数据拆分到多个中。

2.结果:

  • 每个结构都一样

  • 每个数据都不一样,没有交集;

  • 所有并集是全量数据;

3.场景:系统绝对并发量并没有上来,只是单表的数据量太多,影响了SQL效率,加重了CPU负担,以至于成为瓶颈。

4.分析:表的数据量少了,单次SQL执行效率高,自然减轻了CPU的负担。

3、垂直分库

1.概念:以为依据,按照业务归属不同,将不同的拆分到不同的中。

2.结果:

  • 每个结构都不一样;

  • 每个数据也不一样,没有交集;

  • 所有并集是全量数据;

3.场景:系统绝对并发量上来了,并且可以抽象出单独的业务模块。4.分析:到这一步,基本上就可以服务化了。

例如,随着业务的发展一些公用的配置表、字典表等越来越多,这时可以将这些表拆到单独的库中,甚至可以服务化。再有,随着业务的发展孵化出了一套业务模式,这时可以将相关的表拆到单独的库中,甚至可以服务化。

4、垂直分表

1.概念:以字段为依据,按照字段的活跃性,将中字段拆到不同的(主表和扩展表)中。

2.结果:

  • 每个结构都不一样;

  • 每个数据也不一样,一般来说,每个表的字段至少有一列交集,一般是主键,用于关联数据;

  • 所有并集是全量数据;

3.场景:系统绝对并发量并没有上来,表的记录并不多,但是字段多,并且热点数据和非热点数据在一起,单行数据所需的存储空间较大。以至于数据库缓存的数据行减少,查询时会去读磁盘数据产生大量的随机读IO,产生IO瓶颈。

4.分析:可以用列表页和详情页来帮助理解。垂直分表的拆分原则是将热点数据(可能会冗余经常一起查询的数据)放在一起作为主表,非热点数据放在一起作为扩展表。

这样更多的热点数据就能被缓存下来,进而减少了随机读IO。拆了之后,要想获得全部数据就需要关联两个表来取数据。但记住,千万别用join,因为join不仅会增加CPU负担并且会讲两个表耦合在一起(必须在一个数据库实例上)。关联数据,应该在业务Service层做文章,分别获取主表和扩展表数据然后用关联字段关联得到全部数据。

三、分库分表工具

  1. sharding-sphere:jar,前身是sharding-jdbc;

  2. TDDL:jar,Taobao Distribute Data Layer;

  3. Mycat:中间件。

注:工具的利弊,请自行调研,官网和社区优先。

四、分库分表步骤

根据容量(当前容量和增长量)评估分库或分表个数 -> 选key(均匀)-> 分表规则(hash或range等)-> 执行(一般双写)-> 扩容问题(尽量减少数据的移动)。

五、分库分表问题

1、非partition key的查询问题(水平分库分表,拆分策略为常用的hash法)

  1. 端上除了partition key只有一个非partition key作为条件查询

  • 映射法

  • 基因法

注:写入时,基因法生成userid,如图。关于xbit基因,例如要分8张表,23=8,故x取3,即3bit基因。根据userid查询时可直接取模路由到对应的分库或分表。

根据username查询时,先通过usernamecode生成函数生成username_code再对其取模路由到对应的分库或分表。id生成常用snowflake算法

  1. 端上除了partition key不止一个非partition key作为条件查询

  • 映射法

  • 冗余法

注:按照orderid或buyerid查询时路由到dbobuyer库中,按照sellerid查询时路由到dbo_seller库中。感觉有点本末倒置!有其他好的办法吗?改变技术栈呢?

  1. 后台除了partition key还有各种非partition key组合条件查询

  • NoSQL法

  • 冗余法

2、非partition key跨库跨表分页查询问题(水平分库分表,拆分策略为常用的hash法)

注:用NoSQL法解决(ES等)。

3、扩容问题(水平分库分表,拆分策略为常用的hash法)

1.水平扩容库(升级从库法)

注:扩容是成倍的。

2.水平扩容表(双写迁移法)  

第一步:(同步双写)应用配置双写,部署;第二步:(同步双写)将老库中的老数据复制到新库中;第三步:(同步双写)以老库为准校对新库中的老数据;第四步:(同步双写)应用去掉双写,部署;

 

注:双写是通用方案。

六、分库分表总结

  1. 分库分表,首先得知道瓶颈在哪里,然后才能合理地拆分(分库还是分表?水平还是垂直?分几个?)。且不可为了分库分表而拆分。

  2. 选key很重要,既要考虑到拆分均匀,也要考虑到非partition key的查询。

  3. 只要能满足需求,拆分规则越简单越好。

七、分库分表示例

示例GitHub址: 

https://github.com/LiHaodong888/SpringBootLear

<think>嗯,用户想了解Excel中的VLOOKUP函数的用法和参数含义。首先,我需要回忆一下VLOOKUP的基本结构。VLOOKUP是垂直查找函数,用于在表格的首列查找指定的值,然后返回该行中指定列的数据。它的四个参数分别是查找值、表格范围、列索引号和匹配模式。 接下来,我得确认每个参数的具体作用。第一个参数是lookup_value,也就是用户要查找的值,比如产品ID或者姓名。第二个参数是table_array,即查找的范围,这里要注意的是,查找值必须位于这个范围的第一列,否则函数无法正确工作。第三个参数是col_index_num,也就是用户想要返回的数据在表格范围中的第几列,这个列数是从表格范围的第一列开始算起的,不是整个工作表的列。第四个参数是range_lookup,决定是精确匹配还是近似匹配,通常用FALSE或0来指定精确匹配,避免错误。 然后,用户可能需要一个具体的例子来理解如何使用。比如,假设有一个产品价格表,用户想根据产品ID查找对应的价格。这时候,VLOOKUP就可以在ID列查找,然后返回价格列的数据。同时,要提醒用户注意表格范围最好使用绝对引用,比如$A$2:$C$100,这样在拖动公式时范围不会变化。 可能遇到的问题也需要考虑。比如,如果查找值不在表格的第一列,或者列索引号超过了表格的列数,函数会返回错误。此外,数据格式不一致也可能导致问题,比如查找值是数字,而表格中是文本格式的数字,这时候需要统一格式。还有,当出现#N/A错误时,可能是查找值不存在,或者匹配模式设置不正确,需要检查参数是否正确。 用户可能还会问到如何避免常见的错误,比如部分数据匹配出错的情况。这时候需要检查是否有多余的空格,或者数据格式不一致,或者表格范围没有锁定导致拖动时偏移。此外,XLOOKUP作为VLOOKUP的升级版,可能在某些情况下更方便,比如可以向左查找或者返回多列数据,这也是可以提及的内容。 最后,整理步骤,从基础语法到参数说明,再到具体案例,逐步引导用户理解如何使用VLOOKUP函数。同时,提供常见错误和解决方法,帮助用户在实际应用中避免问题。如果有必要,还可以比较VLOOKUP和其他查找函数的区别,比如HLOOKUP或XLOOKUP,但根据用户的问题,主要集中在VLOOKUP本身即可。</think>### Excel VLOOKUP函数详解 #### 一、基础语法与参数说明 VLOOKUP函数的语法为: $$=VLOOKUP(lookup\_value, table\_array, col\_index\_num, [range\_lookup])$$ 包含4个参数: 1. **lookup_value**(必填):要查找的值(如单元格引用或具体值) 2. **table_array**(必填):包含数据的表格范围(必须包含查找列和返回列) 3. **col_index_num**(必填):返回值所在列的序号(从table_array第一列开始计数) 4. **range_lookup**(可选):匹配类型 - `TRUE`/`1`:近似匹配(默认值,需数据升序排列) - `FALSE`/`0`:精确匹配(常用选项) [^1][^2] #### 二、使用步骤演示(工资表查询案例) 假设需要根据员工编号查询工资: 1. 建立查询单元格(如`B12`) 2. 输入公式: ```excel =VLOOKUP(A12, $A$2:$D$100, 4, 0) ``` - `A12`:待查询的员工编号 - `$A$2:$D$100`:锁定数据区域(绝对引用) - `4`:返回第4列(工资列) - `0`:精确匹配 [^2][^3] #### 三、常见错误与解决方法 | 错误现象 | 原因 | 解决方案 | |---------|------|---------| | #N/A | 查找值不存在 | 检查数据源或改用`IFERROR`容错 | | #REF! | 列序号超出范围 | 确认col_index_num ≤ 表格列数 | | 部分匹配失败 | 数据格式不一致 | 统一数值/文本格式 | | 结果错位 | 表格未锁定 | 使用`$`符号固定区域引用 | [^3][^4] #### 四、进阶技巧 1. **多条件查询**: 使用辅助列合并多个条件字段 ```excel =VLOOKUP(A2&B2, $D$2:$F$100, 3, 0) ``` 2. **通配符匹配**: `"*"`匹配任意字符,`"?"`匹配单个字符 ```excel =VLOOKUP("张*", $A$2:$C$100, 3, 0) ``` 3. **跨表查询**: 引用其他工作表数据 ```excel =VLOOKUP(A2, Sheet2!$A$2:$D$100, 4, 0) ``` [^1][^4]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值