Logistic Regression

一种分类算法,属于Discriminant Learning Algorithms,是这样一种类型的算法:直接计算p(y|x)(比如Logistic Regression),或者直接把一个输入判定为一种类别(比如Perceptron Algorithm);而另一种叫做Generative Learning Algorithms,主要计算p(x|y)和p(y)来计算p(y|x)(比如朴素贝叶斯)。

Logistic Regression是这样来建模的:


这里先假设类标签只有{0,1}两种,假设:


则有:


合起写来就是:


用最大似然估计来估计参数(假设各训练样本独立),


通常用随机梯度上升(StochasticGradient Ascent)的方法来最大化上式(速度比较快)。随机选择theta,开始进行如下迭代,直到似然函数前后变化<threshold:


按照以上方法得到参数theta后怎么进行分类呢?


当类标签有k(k>2)的情况,还没看。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值