机器学习笔记
Mr. Donkey_K
这个作者很懒,什么都没留下…
展开
-
机器学习:NLP(自然语言处理)基础,相似度分析,KNN情感分类
文本相似度分析文本相似度分析:从海量数据(文章,评论)中,把相似的数据挑选出来步骤:把评论翻译成机器看的懂的语言使用机器看的懂得算法轮询去比较每一条和所有评论的相似程度把相似的评论挑出来1.把评论翻译成机器看的懂的语言1).分词(把句子拆分成词语)距离川沙公路较近,但是公交指示不对,如果是"蔡陆线"的话,会非常麻烦.建议用别的路线.房间较为简单.[‘距离’, ‘川沙’, ‘...原创 2019-08-05 10:35:53 · 1366 阅读 · 0 评论 -
机器学习:线性回归算法
文章目录单变量线性回归线性回归的一般步骤损失函数梯度下降单变量线性回归线性回归的一般步骤从我们最熟悉的开始…损失函数线性回归实际上要做的事情就是:选择合适的参数(θ0, θ1),使得hθ(x)方程,很好的拟合训练集损失(代价)函数 – 均方误差梯度下降梯度下降梯度下降是一种非常通用的优化算法,能够为大范围的问题找到最优解。梯度下降的中心思想就是迭代的调整参数从而使...原创 2019-08-05 11:12:21 · 297 阅读 · 0 评论 -
机器学习:逻辑回归与K折交叉验证
文章目录逻辑回归的引入决策边界逻辑回归的损失函数熵的引入交叉熵(逻辑回归的损失函数)![在这里插入图片描述](https://img-blog.csdnimg.cn/20190805113330226.png)梯度下降评估指标:K折交叉验证代码实现线性回归:预测一个连续的值逻辑回归:预测一个离散的值逻辑回归的引入当我们要做二分类的时候,我们一般只希望得到两个值 y = 0 或 1但是...原创 2019-08-05 11:51:50 · 6453 阅读 · 0 评论 -
机器学习:深度神经网络
文章目录基本概念神经网络的介绍神经元深度神经网络(大于两层就可以称为深度神经网络)感知器与神经网络感知器神经网络用符号标识神经网络一个神经元的数学表示一层神经元的数学表示神经网络计算流程激活函数为什么需要非线性激活函数常见激活函数激活函数的导数sigmoidtanhReLu和Leaky ReLu如何训练神经网络反向传播的理解计算图计算图的导数神经网络的梯度下降神经网络的传播过程神经网络的传播过程的...原创 2019-08-19 10:18:41 · 2011 阅读 · 0 评论 -
机器学习:卷积神经网络
文章目录引入首先思考一个问题:我们如何识别一个熟人?第二个问题:计算机如何模拟人的行为进行识别RGB示例轮廓特征局部特征计算机处理图像识别的思路神经网络和卷积神经网络的联系卷积神经网络的原理卷积运算边缘检测灰度图Padding & Stride (填充和步长)卷积运算的缺点解决的方法 – 在做卷积运算前,对图像进行填充Vaild 和 Same 卷积运算Stride 步长卷积神经网络的总结和...原创 2019-08-19 11:29:54 · 468 阅读 · 0 评论 -
机器学习:决策树与随机森林
文章目录决策树引入离散化决策树的生成:计算纯度的方式基尼系数决策树的分割方式:非线性单颗决策树的缺陷随机森林随机森林VS逻辑回归剪枝决策树做回归代码实现决策树随机森林决策树引入逻辑回归是一种线性有监督离散型分类模型决策树是一种非线性有监督离散型分类模型随机森林也是一种非线性有监督离散型分类模型离散化案例分析: 离散化数据类型离散的数据 需指明取值数量 2^M 种分割方式天...原创 2019-08-12 09:34:45 · 622 阅读 · 0 评论 -
机器学习:聚类
文章目录无监督机器学习相似度聚类聚类原则K-Means聚类K-Means 改进K-Mediods二分K-MeansK-Means++Mini Batch K-MeansK-Means可以的优化参数选择适当的K值聚类的“相对误差”K均值损失函数求偏导K的选择Canopy聚类层次聚类分裂的层次聚类: DIANA凝聚的层次聚类: AGNES密度聚类DBSCAN密度可达谱和谱聚类谱聚类PCA降维效果图代码...原创 2019-08-12 10:34:46 · 657 阅读 · 0 评论 -
机器学习:支持向量机
文章目录逻辑回归的改进支持向量机的决策边界:线性可分的例子向量内积性质的复习SVM决策边界SVM的核函数:用来使SVM能够处理非线性分类核函数和相似度例子:代码实现博主是初学者,学的很浅显,大家可以参考大佬的文章:https://blog.csdn.net/b285795298/article/details/81977271逻辑回归的改进支持向量机的决策边界:线性可分的例子向量...原创 2019-08-12 11:04:02 · 277 阅读 · 0 评论 -
机器学习:朴素贝叶斯
朴素贝叶斯是一个分类器我们现在用p1(x,y)表示数据点(x,y)属于类别1(圆)的概率,用p2(x,y)表示数据点(x,y)属于类别2(三角)的概率那么对于一个新的数据点(x,y) 我们可以用下面的规则来判断它的类型如果p1(x,y) > p2(x,y),那么类别为1如果p2(x,y) > p1(x,y),那么类别为2独立事件:在一次实验中,一个事件的发生不会影响到另一...原创 2019-08-12 11:26:34 · 283 阅读 · 0 评论