H - Lazier Salesgirl

本文探讨了一个有趣的问题:如何确定懒惰的面包师Kochiya Sanae的等待时间w,以便最大化售出面包的平均价值。通过枚举所有可能的w值并计算相应的平均价值,找出最优解。

Kochiya Sanae is a lazy girl who makes and sells bread. She is an expert at bread making and selling. She can sell the i-th customer a piece of bread for price pi. But she is so lazy that she will fall asleep if no customer comes to buy bread for more than w minutes. When she is sleeping, the customer coming to buy bread will leave immediately. It's known that she starts to sell bread now and the i-th customer come after ti minutes. What is the minimum possible value of w that maximizes the average value of the bread sold?

Input

There are multiple test cases. The first line of input is an integer T ≈ 200 indicating the number of test cases.

The first line of each test case contains an integer 1 ≤ n ≤ 1000 indicating the number of customers. The second line contains n integers 1 ≤ pi ≤ 10000. The third line contains n integers 1 ≤ ti ≤ 100000. The customers are given in the non-decreasing order of ti.

<h4< dd="">Output

For each test cases, output w and the corresponding average value of sold bread, with six decimal digits.

<h4< dd="">Sample Input
2
4
1 2 3 4
1 3 6 10
4
4 3 2 1
1 3 6 10
<h4< dd="">Sample Output
4.000000 2.500000

1.000000 4.000000

思路是枚举所有可能的w,w从1枚举到最大的来买的相邻人的时间差取,所有情况的平均价值最大值就可以了,并纪录下对应的w就可以了,具体的代码看下面

#include <bits/stdc++.h>

using namespace std;

int main()
{
    int num;
    scanf("%d", &num);
    int tm[1010];
    int val[1010];
    while(num --){
        int n;
        scanf("%d", &n);
        int maxn = 0;
        memset(tm, 0, sizeof(tm));
        memset(val, 0, sizeof(val));
        for(int i = 1; i <= n; i ++){
            scanf("%d", &val[i]);
        }
        for(int i = 1; i <= n; i ++){
            scanf("%d", &tm[i]);
            maxn = max(maxn, tm[i] - tm[i - 1]);
        }
        int tot, j;
        double w=0, avg=0,  nowavg;
        //cout << maxn << endl;
        for(int i = 1; i <= maxn; i ++){
            tot=0;
            for(j = 1; j <= n; j ++){
                if(tm[j] - tm[j-1] <= i){
                    tot += val[j];
                }else {
                    if(j == 1)
                       nowavg = 0;
                    else nowavg = tot*1.0 / (j - 1);
                    if(avg < nowavg){
                         avg = nowavg;
                         w = i;
                    }
                    break;
                }
            }
            if(j == n + 1){
                nowavg = tot*1.0 / n;
                if(avg < nowavg){
                    avg = nowavg;
                    w = i;
                }
            }
        }
        printf("%.6f %.6f\n", w, avg);
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值