高等工程数学(张韵华,汪琥庭,宋立功)—— 第一篇:线性代数

第三章:线性变换

  1. 设R 3 ^{3} 3中的线性变换 A \mathscr{A} A α 1 = ( 0 , 0 , 1 ) T , α 2 = ( 0 , 1 , 1 ) T , α 3 = ( 1 , 1 , 1 ) T \boldsymbol{\alpha}_{1}=(0,0,1)^{\mathrm{T}}, \boldsymbol{\alpha}_{2}=(0,1,1)^{\mathrm{T}}, \boldsymbol{\alpha}_{3}=(1,1,1)^{\mathrm{T}} α1=(0,0,1)T,α2=(0,1,1)T,α3=(1,1,1)T 变换到 β 1 = \boldsymbol{\beta}_{1}= β1=
    ( 2 , 3 , 5 ) T , β 2 = ( 1 , 0 , 0 ) T , β 3 = ( 0 , 1 , − 1 ) T . (2,3,5)^{\mathrm{T}}, \boldsymbol{\beta}_{2}=(1,0,0)^{\mathrm{T}}, \boldsymbol{\beta}_{3}=(0,1,-1)^{\mathrm{T}} . (2,3,5)T,β2=(1,0,0)T,β3=(0,1,1)T. A \mathscr{A} A 在自然基和 α 1 , α 2 , α 3 \boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \boldsymbol{\alpha}_{3} α1,α2,α3 下的矩阵.

    P51

    解法: [ α 1 , α 2 , α 3 ] = B \left[\alpha_{1}, \alpha_{2}, \alpha_{3}\right]=B [α1,α2,α3]=B
    [ β 1 , β 2 , β 3 ] = D \left[\beta_{1}, \beta_{2}, \beta_{3}\right]=D [β1,β2,β3]=D
    [ φ ( α 1 ) , φ ( α 2 ) , φ ( α 3 ) ] = [ β 1 , β 2 , β 3 ] = [ α 1 , α 2 , α 3 ] A \left[\varphi\left(\alpha_{1}\right), \varphi\left(\alpha_{2}\right), \varphi\left(\alpha_{3}\right)\right]=\left[\beta_{1}, \beta_{2}, \beta_{3}\right]=\left[\alpha_{1}, \alpha_{2}, \alpha_{3}\right] A [φ(α1),φ(α2),φ(α3)]=[β1,β2,β3]=[α1,α2,α3]A
    ⇒ A = B − 1 D \Rightarrow A=B^{-1} D A=B1D.

    (P53)自然基: e 1 , e 2 , e 3 e_1,e_2,e_3 e1,e2,e3,下:就是矩阵 B B B.

    e 1 = ( 1 , 0 , 0 ) T , e 2 = ( 0 , 1 , 0 ) T , e 3 = ( 0 , 0 , 1 ) T \boldsymbol{e}_{1}=(1,0,0)^{\mathrm{T}}, \boldsymbol{e}_{2}=(0,1,0)^{\mathrm{T}}, \boldsymbol{e}_{3}=(0,0,1)^{\mathrm{T}} e1=(1,0,0)T,e2=(0,1,0)T,e3=(0,0,1)T

    解 :

    A ( α 1 ) = β 1 = k 1 e 1 + k 2 e 2 + k 3 e 3 , \mathscr{A}\left(\boldsymbol{\alpha}_{1}\right)=\boldsymbol{\beta}_{1}=k_{1} \boldsymbol{e}_{1}+k_{2} \boldsymbol{e}_{2}+k_{3} \boldsymbol{e}_{3}, A(α1)=β1=k1e1+k2e2+k3e3,

    解出: ( k 1 k 2 k 3 ) = ( 2 3 5 ) \left( \begin{array} { l } { k _ { 1 } } \\ { k _ { 2 } } \\ { k _ { 3 } } \end{array} \right) = \left( \begin{array} { r } { 2 } \\ { 3 } \\ { 5 } \end{array} \right) k1k2k3=235.

    同理解出

    A ( α 2 ) = ( e 1 , e 2 , e 3 ) ( 1 0 0 ) \mathscr{A}\left(\boldsymbol{\alpha}_{2}\right)=\left(\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \boldsymbol{e}_{3}\right)\left(\begin{array}{r}1 \\ 0 \\ 0\end{array}\right) A(α2)=(e1,e2,e3)100.

    A ( α 2 ) = ( e 1 , e 2 , e 3 ) ( 0 1 − 1 ) \mathscr{A}\left(\boldsymbol{\alpha}_{2}\right)=\left(\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \boldsymbol{e}_{3}\right)\left(\begin{array}{r}0 \\ 1 \\ -1\end{array}\right) A(α2)=(e1,e2,e3)011.

    得到矩阵

    A = ( 2 1 0 3 0 1 5 0 − 1 ) A=\left(\begin{array}{rrr}2 & 1 & 0 \\ 3 & 0& 1 \\ 5 & 0 & -1\end{array}\right) A=235100011

    (P53)在 α 1 , α 2 , α 3 \boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \boldsymbol{\alpha}_{3} α1,α2,α3 下:

    A ( α 1 ) = β 1 = k 1 α 1 + k 2 α 2 + k 3 α 3 , \mathscr{A}\left(\boldsymbol{\alpha}_{1}\right)=\boldsymbol{\beta}_{1}=k_{1} \boldsymbol{\alpha}_{1}+k_{2} \boldsymbol{\alpha}_{2}+k_{3} \boldsymbol{\alpha}_{3}, A(α1)=β1=k1α1+k2α2+k3α3,

    k 1 ( 0 , 0 , 1 ) T + k 2 ( 0 , 1 , 1 ) T + k 3 ( 1 , 1 , 1 ) T = ( 2 , 3 , 5 ) T k_1(0,0,1)^T+k_2(0,1,1)^T+k_3(1,1,1)^T=(2,3,5)^T k1(0,0,1)T+k2(0,1,1)T+k3(1,1,1)T=(2,3,5)T,解出: ( k 1 k 2 k 3 ) = ( 2 1 2 ) \left( \begin{array} { l } { k _ { 1 } } \\ { k _ { 2 } } \\ { k _ { 3 } } \end{array} \right) = \left( \begin{array} { r } { 2 } \\ { 1 } \\ { 2 } \end{array} \right) k1k2k3=212.

    A ( α 1 ) = ( α 1 , α 2 , α 3 ) ( 2 1 2 ) \mathscr{A}\left(\boldsymbol{\alpha}_{1}\right)=\left(\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \boldsymbol{\alpha}_{3}\right)\left(\begin{array}{r}2 \\ 1 \\ 2\end{array}\right) A(α1)=(α1,α2,α3)212

    同理解出

    A ( α 2 ) = ( α 1 , α 2 , α 3 ) ( 0 − 1 1 ) \mathscr{A}\left(\boldsymbol{\alpha}_{2}\right)=\left(\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \boldsymbol{\alpha}_{3}\right)\left(\begin{array}{r}0 \\ -1 \\ 1\end{array}\right) A(α2)=(α1,α2,α3)011.

    A ( α 3 ) = ( α 1 , α 2 , α 3 ) ( − 2 1 0 ) \mathscr{A}\left(\boldsymbol{\alpha}_{3}\right)=\left(\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \boldsymbol{\alpha}_{3}\right)\left(\begin{array}{r}-2 \\ 1 \\ 0\end{array}\right) A(α3)=(α1,α2,α3)210.

    得到矩阵

    A = ( 2 0 − 2 1 − 1 1 2 1 0 ) A=\left(\begin{array}{rrr}2 & 0 & -2 \\ 1 & -1 & 1 \\ 2 & 1 & 0\end{array}\right) A=212011210.

验证:

( 0 0 1 0 1 1 1 1 1 ) \left(\begin{matrix} 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{matrix}\right) 001011111* ( 2 0 − 2 1 − 1 1 2 1 0 ) \left(\begin{matrix} 2 & 0 & -2 \\ 1 & -1 & 1 \\ 2 & 1 & 0 \end{matrix}\right) 212011210= ( 2 1 0 3 0 1 5 0 − 1 ) \left(\begin{matrix} 2 & 1 & 0 \\ 3 & 0 & 1 \\ 5 & 0 & -1 \end{matrix}\right) 235100011.

  1. 设A,B均为n阶方阵,A有n个互异的特征值,且AB=BA.证明:B相似于对角阵

    证明:由于AB=BA 所以有 ( P − 1 A P ) ( P − 1 B P ) = ( P − 1 B P ) ( P − 1 A P ) (P^{-1}AP)(P^{-1}BP)=(P^{-1}BP)(P^{-1}AP) (P1AP)(P1BP)=(P1BP)(P1AP),可以取P使得 P − 1 A P = d i a g [ d 1 , d 2 . . . . d n ] , 令 P − 1 B P = ( C i j ) n ∗ n P^{-1}AP=diag[d_1,d_2....d_n],令P^{-1}BP=(C_{ij})_{n*n} P1AP=diag[d1,d2....dn],P1BP=(Cij)nn,则有:

    ( d 1 . . d n ) ∗ ( c 11 c 12 . . c n 1 c n n ) = ( c 11 c 12 . . c n 1 c n n ) ∗ ( d 1 . . d n ) \left(\begin{array}{rrr}d_1 & & \\ & .. & \\ & & d_n\end{array}\right)*\left(\begin{array}{rrr}c_{11} & c_{12} & \\ & .. & \\ c_{n1} & & c_{nn}\end{array}\right)=\left(\begin{array}{rrr}c_{11} & c_{12} & \\ & .. & \\ c_{n1} & & c_{nn}\end{array}\right)*\left(\begin{array}{rrr}d_1 & & \\ & .. & \\ & & d_n\end{array}\right) d1..dnc11cn1c12..cnn=c11cn1c12..cnnd1..dn.

    比较两边元素有 d i c i j = d j c i j d_ic_{ij}=d_jc_{ij} dicij=djcij,(i,j=1,2……n),当 i ≠ j , 有 d i ≠ d j i \ne j,有d_i \neq d_j i=j,di=dj

    由上式得到 ( d i − d j ) C i j = 0 (d_i-d_j)C_{ij}=0 (didj)Cij=0,所以 C i j = 0 , ( i , j = 1 , 2 , 3... n , i ≠ j ) C_{ij}=0,(i,j=1,2,3...n,i \neq j) Cij=0(i,j=1,2,3...n,i=j),所以

    P − 1 B P = ( c 11 . . c n n ) P^{-1}BP=\left(\begin{array}{rrr}c_{11} & & \\ & .. & \\ & & c_{nn}\end{array}\right) P1BP=c11..cnn,

  • 3
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CLiuso

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值