公式为: n!(k1)!∗(k2)!∗(k3)!∗...∗(kp)! n ! ( k 1 ) ! ∗ ( k 2 ) ! ∗ ( k 3 ) ! ∗ . . . ∗ ( k p ) !
n n : 串长度
: 串中第 i i 种元素出现的次数
: 串中不同元素的个数
例如:
串为 abac a b a c , 求串的去重全排列的个数
串的长度为 4 4 , 所以 = =
在这个串中,一共有 3 3 种元素,分别为 , b b , 所以 p p 3 3 .
- 元素 出现 2 2 次,所以 = =
- 元素 b b 出现 次,所以 k2 k 2 = =
- 元素 c c 出现 次,所以 k3 k 3 = =
所以去重全排列个数为: 4!(2)!∗(1)!∗(1)! 4 ! ( 2 ) ! ∗ ( 1 ) ! ∗ ( 1 ) ! = =
去重全排列如下:
1.aabc
2.aacb
3.abac
4.abca
5.acab
6.acba
7.cbaa
8.bcaa
9.caba
10.acba
11.baca
12.abca