代码随想录算法训练营第十七天 | 110. 平衡二叉树、257. 二叉树的所有路径、404. 左叶子之和

[LeetCode] 110. 平衡二叉树

[LeetCode] 110. 平衡二叉树 文章解释

[LeetCode] 110. 平衡二叉树 视频解释

给定一个二叉树,判断它是否是

平衡二叉树

 

示例 1:

输入:root = [3,9,20,null,null,15,7]
输出:true

示例 2:

输入:root = [1,2,2,3,3,null,null,4,4]
输出:false

示例 3:

输入:root = []
输出:true

提示:

  • 树中的节点数在范围 [0, 5000]
  • -10^4 <= Node.val <= 10^4

自己看到题目的第一想法 

    1. 什么是平衡二叉树, 平衡二叉树的具体定义是什么呢?

看完代码随想录之后的想法

    1. 平衡二叉树的定义: 每一个节点的左子树和右子树的高度叉不大于一, 则说当前二叉树为平衡二叉树.

    2. 根据定义可以很本能的想到使用递归法来判断是否平衡二叉树. 假设当前节点为 node, 则先计算 node.left 的高度, 再计算 node.right 的高度. 如果 node.left 和 node.right 的差的绝对值大于 1, 则说明当前节点的左右子树破坏了平衡, 因此整颗树都不是平衡二叉树. 此时返回 -1. 如果 node.left 和 node.right 的差的绝对值不大于 1, 则将两者中的大者加一后, 返回给上一层函数.

    3. 一定要记得, 这里是要判断每一个节点是否平衡, 不是只单单判断跟节点的左右节点是否高度上满足平衡条件.

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
// 递归法
class Solution {
    public boolean isBalanced(TreeNode root) {
        if (root == null) {
            return true;
        }
        int leftHeight = getHeight(root.left);
        int rightHeight = getHeight(root.right);
        return leftHeight != -1 && rightHeight != -1 && Math.abs(leftHeight - rightHeight) <= 1;// 这个条件老是忘记
    }

    private int getHeight(TreeNode node) {
        if (node == null) {
            return 0;
        }        
        if (node.left == null && node.right == null) {
            return 1;
        } else {
            int leftHeight = getHeight(node.left);
            if (leftHeight == -1) { // 这个条件老是忘记
                return -1;
            }
            int rightHeight = getHeight(node.right);
            if (rightHeight == -1) { // 这个条件老是忘记
                return rightHeight;
            }
            if (Math.abs(leftHeight - rightHeight) > 1) {
                return -1;
            } else {
                return Math.max(leftHeight, rightHeight) + 1;
            }
        }
    }
}
/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
// 迭代法
class Solution {
    public boolean isBalanced(TreeNode root) {
        if (root == null) {
            return true;
        }
        Stack<TreeNode> nodes = new Stack<>();
        TreeNode node = null;
        nodes.push(root);
        int leftHeight = 0;
        int rightHeight = 0;
        while (!nodes.isEmpty()) {
            node = nodes.pop();
            leftHeight = getHeight(node.left);
            rightHeight = getHeight(node.right);
            if (Math.abs(leftHeight - rightHeight) > 1) {
                return false;
            }
            if (node.right != null) {
                nodes.push(node.right);
            }
            if (node.left != null) {
                nodes.push(node.left);
            }
        }
        return true;
    }

    private int getHeight(TreeNode node) {
        if (node == null) {
            return 0;
        }
        Stack<TreeNode> nodes = new Stack<>();
        int maxDepth = 0;
        int depth = 0;
        nodes.push(node);
        while (!nodes.isEmpty()) {
            node = nodes.pop();
            if (node != null) {
                nodes.push(node);
                nodes.push(null);
                depth++;
                if (node.right != null) {
                    nodes.push(node.right);
                }
                if (node.left != null) {
                    nodes.push(node.left);
                }
            } else {
                nodes.pop();
                depth--;
            }
            if (maxDepth < depth) {
                maxDepth = depth;
            }
        }
        return maxDepth;
    }
}

自己实现过程中遇到哪些困难

    1. 遇到了一个定义上理解错误的地方. 平衡二叉树的平衡, 说的是每个节点都是平衡的, 而不单单指跟节点的左右子节点是平衡的. 最极端的例子, 一个跟节点, 左节点开始的每个节点只有左节点, 右节点开始的每个节点只有右节点, 假设跟节点的左右子树高度都是3, 这时候当前子树并不是平衡的.

    2. 计算平衡二叉树高度的时候, 老是忘记判断迭代返回高度值为 -1 的情况. 说明对平衡二叉树的判断逻辑还掌握的不够清楚和彻底. 写博客的意义更多的是理清思路, 整理架构. 而现在的模式更像是在记流水账. 需要反思.

[LeetCode] 257. 二叉树的所有路径

[LeetCode] 257. 二叉树的所有路径 文章解释

[LeetCode] 257. 二叉树的所有路径 视频解释

自己看到题目的第一想法

解决的思路:

    1. 首先, 需要遍历整个二叉树.

    2. 当遇到叶子结点的时候, 记录一下当前的路径.

    3. 当遇到叶子结点并且记录过路径后, 需要将叶子结点从路径中删除.

疑惑点:

    如何找到当前叶子结点的上一个节点呢, 只有找到上一个节点, 才能继续遍历.

看完代码随想录之后的想法

    1. 递归法: 递归法的逻辑就是把所有遍历到的元素添加到路径列表里, 同时传给下一个子节点. 这样当到达叶子结点时, 叶子结点就知道从根节点到自己的路径是什么.

    2. 迭代法: 通过迭代法遍历元素,

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
 // 递归解法1: 效率一般 49.36%
class Solution {
    public List<String> binaryTreePaths(TreeNode root) {
        List<String> result = new ArrayList<>();
        binaryTreePaths(root, new ArrayList<Integer>(), result);
        return result;
    }

    private void binaryTreePaths(TreeNode node, List<Integer> paths, List<String> result) {
        if (node == null) {
            return;
        }
        paths.add(node.val);
        StringBuilder strBuilder = new StringBuilder();
        if (node.left == null && node.right == null) {
            for (int i = 0; i < paths.size() - 1; i++) {
                strBuilder.append(paths.get(i) + "->");
            }
            strBuilder.append(paths.get(paths.size() - 1));
            result.add(strBuilder.toString());
            paths.remove(paths.size() - 1);
            return;
        }

        if (node.left != null) {
            binaryTreePaths(node.left, paths, result);
        }
        if (node.right != null) {
            binaryTreePaths(node.right, paths, result);
        }
        paths.remove(paths.size() - 1);
    }
}
/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
 // 递归解法 1 的 StringBuilder 优化版: 
class Solution {
    public List<String> binaryTreePaths(TreeNode root) {
        List<String> result = new ArrayList<>();
        binaryTreePaths(root, "", result);
        return result;
    }

    private void binaryTreePaths(TreeNode node, String path, List<String> result) {
        if (node == null) {
            return;
        }
        StringBuilder strBuilder = new StringBuilder(path);
        strBuilder.append(node.val);
        if (node.left == null && node.right == null) {
            result.add(strBuilder.toString());
            return;
        
        }
        strBuilder.append("->");
        if (node.left != null) {
            binaryTreePaths(node.left, strBuilder.toString(), result);
        }
        if (node.right != null) {
            binaryTreePaths(node.right, strBuilder.toString(), result);
        }
    }
}
/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
 // 迭代法: 49.36%
class Solution {
    public List<String> binaryTreePaths(TreeNode root) {
        List<String> result = new ArrayList<>();
        if (root == null) {
            return result;
        }
        Stack<TreeNode> nodes = new Stack<>();
        List<Integer> paths = new ArrayList<>();
        TreeNode node = null;
        nodes.push(root);
        while (!nodes.isEmpty()) {
            node = nodes.pop();
            if (node != null) {
                if (node.left == null && node.right == null) {
                    StringBuilder strBuilder = new StringBuilder();
                    for (int i = 0; i < paths.size(); i++) {
                        strBuilder.append(paths.get(i)).append("->");
                    }
                    strBuilder.append(node.val);
                    result.add(strBuilder.toString());
                }
                
                nodes.push(node);
                nodes.push(null);
                paths.add(node.val);

                if (node.right != null) {
                    nodes.push(node.right);
                }
                if (node.left != null) {
                    nodes.push(node.left);
                }
            } else {
                nodes.pop();
                paths.remove(paths.size() - 1);
            }
        }
        return result;
    }
}

[LeetCode] 404. 左叶子之和

[LeetCode] 404. 左叶子之和 文章解释

[LeetCode] 404. 左叶子之和 视频解释

自己看到题目的第一想法

    先看了视频, 所以好像没有什么自己的思考.

    1. 遍历二叉树, 遇到叶子结点的时候, 判断一下当前节点是不是左节点, 是的话将值加入到统计中.

    2. 遍历二叉树的时候不知道当前节点是否是父节点的左节点, 可以采用递归的方式, 将当前节点的父节点传递下来, 或者用一个变量标记当前节点是否是左节点.

    3. 好像整体也没有很难.

看完代码随想录之后的想法

    1. 最核心的部分就是, 如果不使用额外信息的时候. 我们在递归三部曲的循环结束条件中, 需要添加对左侧叶子结点的判断.  即  node.left != null && node.left.left != null && node.left.right != null.

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
// 递归解法
class Solution {
    public int sumOfLeftLeaves(TreeNode root) {
        if (root == null) {
            return 0;
        }
        int leftTreeSum = 0;
        int rightTreeSum = 0;
        if (root.left != null 
            && root.left.left == null && root.left.right == null) {
            leftTreeSum = root.left.val;
        } else {
            leftTreeSum = sumOfLeftLeaves(root.left);
        }
        rightTreeSum = sumOfLeftLeaves(root.right);
        return leftTreeSum + rightTreeSum;
    }
}
/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
// 迭代解法
class Solution {
    public int sumOfLeftLeaves(TreeNode root) {
        if (root == null) {
            return 0;
        }
        Stack<TreeNode> nodes = new Stack<>();
        TreeNode node = null;
        nodes.push(root);
        int sum = 0;
        while (!nodes.isEmpty()) {
            node = nodes.pop();
            if (node.right != null) {
                nodes.push(node.right);
            }
            if (node.left != null && node.left.left == null
                && node.left.right == null) {
                sum += node.left.val;
            } else if (node.left != null) {
                nodes.push(node.left);
            }
        }
        return sum;
    }
}

自己实现过程中遇到哪些困难

    使用迭代实现的时候, 很难想到什么时候要用标记法, 什么时候不需要.

    虽然递归的单次循环条件也时常想不明白, 但是整体来说, 递归方案会更容易调试出来.

    要怎么梳理, 才能让自己掌握得更好呢?

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值