mysql innodb索引结构的理解

70 篇文章 0 订阅
37 篇文章 0 订阅

从几个“经验”做法问题开始:

1、建索引的时候,建议使用一个id字段作为主键,并递增的插入,这样效率更高。

2、为什么索引查询的时候,会有前缀匹配的约束?

开始的时候抛出这两个问题,我们先了解完innodb的索引的数据结构,再回来看这两个问题是不是更清晰了。

innodb的数据与主键索引是如何组织

B树与B+树的基本原理

mysql的索引通过B+树来进行组织。为什么是B+树?这先简单回顾一下B树和B+树的基本原理和特性。

B树可以参考基本概念B树定义,简单理解为一般化的二叉查找树,B+树的定义如下B+树定义

B树的结构如下图所示:

B+树结构如下图所示:

B+树结构

B+树相对B树而言,在建索引场景下,有几个好处:

1)数据只存在叶子节点中,对于遍历全部数据或者区间数据而言,可以顺序遍历,效率高。

2)非叶子节点,只存储关键字,不存储数据,使得每个块存储的关键字相对B树而言较多,可以减少查找过程中的IO次数。查找效率相对稳定。

B+树的插入操作

 这里引用《mysql技术内幕》中的一段,说明对于B+树索引的插入操作的算法

我们可以看到,对于正常的插入操作的话,如果leaf page和index page都是空的情况下,最简单,直接插入即可。而对于插入数据在非连续情况下,例如,上图B+树结构中,如果插入的数据一直处于(5,90)这个区间内的情况下,那当leaf page满的时候,需要不停的进行分页操作。而此时,对磁盘IO是随机的

而如果插入的时候,如果一直是id递增的,则只需要不停的申请新的磁盘块进来,并插入数据,将索引插入,而此时的磁盘IO,是顺序的。

因此,这里可以得到问题1的结论:插入ID主键递增的时候,innodb建索引的时候,可以是顺序磁盘IO,因为效率要比插入ID是非顺序递增要高效。

联合索引情况下,索引如何存储

举个实例:

create table t(a int not null, b int not null, primary key(a), key index_a_b(a,b));

里面的联合索引,本质上也是一颗B+树,如下图所示:

我们看到,里面的数据是已经按(a,b)排好序了。

我们在查找的时候,可以使用select * from where a = xxx and b = xxx; 我们也可以使用select * from where a = xxx;这样,因为对于a来说,在页子中遍历,是有序的。 但是,我们无法使用select * from where b = xx;这样来进行查找,因为对于b数据而言,它在叶子中,是无序的。所以对于联合索引(a, b),使用where b = xx的时候,是无法使用索引。

因此,这里也解释了问题2,为什么联合索引必须是前缀匹配的原因,因为联系索引在B+树中是按联系索引的定义先后进行排序的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值