机器学习
文章平均质量分 97
DreamWendy
浸透了奋斗的泪泉,洒遍了牺牲的血雨。
展开
-
机器学习 —— 支持向量机
一、基于最大间隔分隔数据1.1 线性模型1.2 超平面1.3 支持向量1.4 支持向量机二、寻找最大间隔三、拉格朗日乘子法与对偶问题3.1对偶问题:等式约束3.2不等式约束的KKT条件3.3最大间隔问题的拉格朗日乘法四、SMO算法4.1 小规模数据集4.2 应用简化版 SMO 算法处理小规模数据集4.3、利用完整Platt SMO算法加速优化五、示例:基于SVM的手写数字识别5.1 数据集5.2 算法实现六、实验总结原创 2021-12-31 00:29:05 · 16433 阅读 · 0 评论 -
机器学习 —— 朴素贝叶斯
一、基于贝叶斯决策理论的分类方法二、条件概率三、朴素贝叶斯分类器四、使用朴素贝叶斯进行文档分类4.1准备数据:从文本中构建词向量4.2 训练算法:从词向量计算概率4.3 测试算法:根据现实情况修改分类器4.4 准备数据:文档词袋模型五、示例:使用朴素贝叶斯过滤垃圾邮件5.1准备数据:切分文本5.2 测试算法:使用朴素贝叶斯进行交叉验证5.3 垃圾邮件分类完整代码六、朴素贝叶斯实验总结原创 2021-11-29 18:41:57 · 24045 阅读 · 11 评论 -
机器学习 —— Logistic回归
现有一些数据点,我们用 一条直线对这些点进行拟合,该线称为最佳拟合直线,这个拟合过程就称作回归。利用Logistic 回归进行分类的主要思想是:根据现有数据对分类边界线建立回归公式,以此进行分类。这里的 “回归”一词源于最佳拟合,表示要找到最佳拟合参数集。 训练分类器时的做法就是寻找最佳拟合参数,使用的是最优化算法。回归Logistic回归的一般过程 (1) 收集数据:采用任意方法收集数据。 (2) 准备数据:由于需要进行距离计算,因此要求数据类型为数值型。...原创 2021-11-22 02:02:21 · 9969 阅读 · 2 评论 -
机器学习 —— 决策树
一、决策树的基本概念原创 2021-10-29 00:46:50 · 10868 阅读 · 3 评论 -
机器学习——K-近邻算法实例实战
一、使用k近邻算法改进约会网站的配对效果1.1 实例分析我的朋友海伦一直使用在线约会网站寻找适合自己的约会对象。尽管约会网站会推荐不同的人选,但她没有从中找到喜欢的人。经过一番总结,她发现曾交往过三种类型的人:不喜欢的人 魅力一般的人 极其魅力的人尽管发现了上述规律,但海伦依然无法将约会网站推荐的匹配对象归入恰当的分类。她觉得可以在周一到周五约会那些魅力一般的人,而周末更喜欢与那些极具魅力的人为伴。海伦希望我们的分类软件可以更好地帮助她将匹配对象划分到确切...原创 2021-10-10 17:48:15 · 6365 阅读 · 3 评论 -
机器学习——K-近邻算法基础入门(简单易懂)
一、K-近邻算法概述简单地说,K-近邻算法就是采用测量不同特征值之间的距离方法来进行分类。优点:精度高,对异常值不敏感,无数据输入假定简单地说。缺点:计算复杂度高,空间复杂度高。适用范围:数值型和标称型。工作原理: 存在一个样本数据集合,也称作训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一数据与所属分类的对应关系,输入没有标签的新数据之后,将新数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取出样本集中特征最相似数据的分类标签。一般来说,我们只选择样.原创 2021-10-03 19:02:38 · 725 阅读 · 0 评论