数据结构——查分数组

介绍

查分数组是一个数据结构。相当于前缀和的逆运算。
查分数组的功能是修改区间,查询点。
修改区间的时间复杂度是O(1).
查询点的时间复杂度是O(n)。若配合树状数组时间复杂度可达到O(log n)。

  • 修改区间操作
    x位置加上修改量,y+1位置减去修改量。这样就相当于整个区间的元素都修改了。
static void update(int x,int y,int z){
	b[x]+=z;
	b[y+1]-=z;
}
  • 查询
    刚刚修改方便了,但是查询的时候就需要全部都加一遍了。
static int sum(int x){
	int ans=0;
	for(int i=1;i<=x;i++) ans+=b[i];
	return ans;
}
  • 预处理
	b[1]=a[1];
	for(int i=2;i<=n;i++) b[i]=a[i]=a[i-1];

算法思路

地推建立查分数组s。使用递推式:c[i]=a[i-1]-a[i]。
将s[left]+k,s[right+1]-k可以实现区间修改的目的。
单点查询:求前缀和。
还原原数组的方式:s[i]+=s[i-1]

D - Tallest Cow

原题链接
这道题数据卡的很死。这种方法应该不是最优。我按原题给的最大数据范围开了数组空间。然后超了内存。


import java.io.IOException;
import java.util.Scanner;

public class Main {
	/*
	 * POJ-3263  D - Tallest Cow 
	 * 查分数组+前缀和
	 */
	static int N,I,R,H,a,b,M,cf[];
	static boolean vis[][];
	
	public static void main(String []args)throws IOException {
		Scanner sc=new Scanner(System.in);
		N=sc.nextInt();I=sc.nextInt();
		H=sc.nextInt();R=sc.nextInt();
		M=N+1;
		vis=new boolean [M][M];
		cf=new int [N+1];
		for(int i=1;i<=R;i++) {
			a=sc.nextInt();
			b=sc.nextInt();
			if(a>b) { int temp=a;a=b;b=temp; }
			if(!vis[a][b]) {
				cf[a+1]--;
				cf[b]++;
				vis[a][b]=true;
			}
		}
		int res=0;
		for(int i=1;i<=N;i++) {
			res+=cf[i];
			System.out.println(H+res);
		}
	}
}
/*
9 3 5 5
1 3
5 3
4 3
3 7
9 8

5
4
5
3
4
4
5
5
5
*/
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值