❤判断推理
❤数理关系
❤资料分析
区分确定和不定信息。不定信息有:假言、不相容选言、相容选言、特称(有的)。
从重复信息入手。比如某词项出现两次。
分情况讨论:当a>0当a=0当a<0。
涉及百分数的题,当加和超过100则说明可能有交集。
假设法。
三段论小星星法:标记前提周延,结论不周延。当每个项都被标记一次且右侧只有一个星星时是有效式。
...
真值题的解题思路:利用矛盾的数量得出一些信息。然后符号化为鲁滨孙矛盾式和等值式。必要的时候假设一步、代入选项、查真值表。01.一真两假(或多假,是一样的)。找出矛盾的两项得出一真一假,则剩余项必然假。02.两真两假:找出矛盾的两项得出一真一假,则剩余的两项必然一真一假。03.全假。则矛盾式必真。
非形式逻辑的解题思路:观察语词特别是选项中的语词和语句,是否存在逻辑错误、无中生有、偷换概念等。避开绝对必然词例如一定、只要就、最、更,多选可能词。注意转折词,转折词意味着矛盾就在这里。遇到包容矛盾双方的解释可以选。常见题型有问前提和问结论。常用方法:假设、代入并排除。
论证推理的解题思路:全体推个体,个体推全体(或然),类比推理。对或然题有削弱和加强。削弱手段有因果倒置、否定因果、另有他因、有因无果、无因有果等。加强有肯定因果、排除他因、无因无果。类比推理考语义、语法、集合对应关系。定义推理。重视主体、客体、原因、目的、方式、条件、时间,找关键词。建议多用排除法。
图形推理考观察能力,二维图形位置(平移旋转翻转)、样式(遍历、运算、渐变)、属性(对称与轴、曲直)、数量(点线面、笔画、角)。二维与三维间的关系,比如展开、组成部分等。题型实质:人脑模拟电脑,所以才会有遍历、图形运算求差集这样的东西。平移旋转什么的很多时候运用于密码学。技巧:因为比较难,多用排除法才能找到确定答案。例如一堆黑白点的那种推理,把图形分为中心和外围两个部分去判断。
一、判断推理:形式推理
01.非真值题
(1)某市要建花园或修池塘,有下列4种假设:修了池塘就要架桥;架了桥就不能建花园;建花园必须植树;植树必须架桥。据此不可能推出的是:A.最后有池塘B.最后一定有桥C.最后可能有花园D.池塘和花园不能同时存在
解释:池塘→桥→~花园。花园→树→桥→~花园。不可能建花园。题目问的是不可能推出因此选C。
(2)小李考上了清华,或者小孙未考上北大。如果小张考上了北大,则小孙也考上了北大;如果小张未考上北大,则小李考上了清华。 如果上述断定为真,则以下哪项一定为真? 单项选择题 A、小李考上了清华 B、小张考上了北大 C、小李未考上清华 D、小张未考上北大
解释:清华北大为干扰词直接无视。李或~孙,张→孙,~张→李。选A。
(3)某研究所的员工构成情况是:①所有的工程师都是男性,②并非所有工程师都是研究生,③并非所有研究生都是男性。由此可以推出:A.有的男性不是工程师B.有的男研究生是工程师C.有的研究生是男性D.有的男性不是研究生。
解题:观察选项,先符号化。①工→男②并非所有=有的不,有的工→~研③有的研→~男。因为ABC推不出所以选D。
02.真值题
(1)一真两假:某省游泳队进行了为期一个月的高原集训,集训最后一日所有队员进行了一次队内测试,几位教练预测了一下队员的成绩:张教练说:这次集训时间短,没人会达标。孙教练说:有队员会达标。王教练说:省运会冠军或国家队队员可达标。测试结束后,只有一位教练的预测是正确的。由此可以推出:A. 没有人达标B. 全对都达标了C. 国家队队员未达标D. 省运会冠军达标
解题:张孙矛盾一真一假,得王假,得国家队队员未达标选C。其他的判断不出。
(2)两真两假:郝大爷过马路时不幸摔倒昏迷,所幸有小伙子及时将他送往医院救治。郝大爷病情稳定后,有4位陌生小伙陈安、李康、张幸、汪福来医院看望他。郝大爷问他们究竟是谁送他来医院,他们回答如下:陈安:我们4人都没有送您来医院。李康:我们4人有人送您来医院。张幸:李康和汪福至少有一人没有送您来医院。汪福:送您来医院的人不是我。后来证实上述4人有两人说真话,有两人说假话。根据上述信息,可以得出以下哪项?A.说真话的是李康和张幸。B.说真话的是陈安和张幸。C.说真话的是李康和汪福。D.说真话的是张幸和汪福。E.说真话的是陈安和汪福。
解题:两真两假,陈李一真一假,则张汪一真一假。而张汪语言中有∨符号导致汪真则张真,而要求一真一假,因此汪必假(送医的是汪),张必真(李康没送医)。因为汪假(必有人送医),则李真陈假。因此说真话的是张李,选A。注意不要把送医院的人和说真话的人混淆。送医的人是汪,或者陈、张也有可能参与送医。
(3)全假:某办公室有张、王、李、刘、陈五人,其中张、王、李对五人年终评优的结果推测如下:张:如果陈没有被评定为优秀,则我也不会被评定为优秀。王:我和刘、陈三人要么都优秀,要么都不优秀。李:如果我被评定为优秀,则王也被评定为优秀。评定结果出来后,发现三个人的预测都是错的,则最终有( )个人优秀。A1B2C3D4。
解题:全假题,则它们的矛盾式必然为真,因此先翻译成矛盾式。
~陈→~张的矛盾式为~陈∧张。推出张,~陈。
李→王的矛盾式为李∧~王。推出李,~王。
(王∧刘∧陈)∨(~王∧~刘∧~陈)的矛盾式为(王∨'刘∨'陈)∧~(王∧刘∧陈)。相容选言标为∨'。因为~陈~王而又必有一个,则得出刘。
因此为3人。
如果不按形式推理尬推,直接否定如果句是可知的,那么会陷入不可知的情况。而不可知不属于“三人预测都是错的”范畴。因此不能这样推。
(4)其他比较综合的题用了矛盾式和等值式两种的(一真两假):资料室选派小郑、小周谁去基层蹲点有三种不同的意见:(1)只要小郑去,小周就不去;(2)只要小周不去,小郑就要去;(3)小郑去基层蹲点。资料领导研究后,同意了一种意见,否定了两种意见,据此可以推出:A.小郑、小周都去B.小郑、小周都不去C.小郑去而小周不去D.小周去而小郑不去。
解题:
①郑→~周,等值于~郑∨周。
②~周→郑,等值于周∨郑,矛盾式为~周∧~郑。
③郑=1
因为一真两假,当③真时②也真,因此③假。③假则①真,则②假,则②的矛盾式真,则选B。
二、判断推理:非形式推理
(1)题干:近年来,国家从药品生产、流通和销售各环节发力,频频出台降低药价的相关政策。但是,让不少患者感到疑惑的是,一方面是国家降低药价的政策不断出台,另一方面却是诸多常用药价格不断上涨。以下哪项如果为真,最能解释上述现象?A、价格下降的药品占大多数,价格上涨的药品占少数,因此从整体上来说,药品价格仍然是下降了B、常用进口药的需求增多,相关政策无法控制此类药品的价格上涨C、国家虽然出台了降低药价的政策,但是其影响要经过一段时间才能显现出来D、降低药价的政策可以有效控制药品市场中因制药原料涨价而导致的药价上涨
解释:找出矛盾句:一方面...另一方面却。要细分价格(下降,持平或未降,上涨)。A句整体价格不能解释常用药上涨。B句河狸,它说的常用进口药是常用药的一种,涨了会导致常用药整体涨。C句只能解释药价为什么没有降下来,不能解释为什么药价上涨了。D句没有解释常用药上涨。选B。综上所述,没有解释也是罪过,不能选。
(2)三人在一起猜测晚会节目的顺序。甲说:“一班第一个出场,二班第三个出场。”乙说:“三班第一个出场,四班第四个出场。”丙说:“四班第二个出场,一班第三个出场。”结果公布后,发现他们的猜测都只对了一半。由以上可以推出,节目的正确出场顺序是:A.四班第一,三班第二,一班第三,二班第四B.二班第一,一班第二,三班第三,四班第四C.三班第一,四班第二,二班第三,一班第四D.一班第一,二班第二,四班第三,三班第四
解题:此题代入法,只对一半的就是正确选项。换其他方法做,则假设两次。选c。
(3)针对一块园地,园艺师们提出了如下建议:(1)牡丹、芍药至多种植一种(2)如果种植芍药,则不能种植蝴蝶兰或者玫瑰(3)牡丹、玫瑰至少种植一种。实际种植时,上述三条建议只有一条被采纳。根据以上陈述,以下最可能符合实际种植情况的是:A.牡丹、芍药和玫瑰均种B.种植芍药,但不种植蝴蝶兰、玫瑰C.芍药、蝴蝶兰和玫瑰均种D.种植蝴蝶兰,但不种植玫瑰、芍药
解题:A。代入法。
三、判断推理:论证推理
(1)在村庄东西两块玉米地中,东面的地施过磷酸钙单质肥料,西面的地则没有。结果,东面的地亩产玉米300公斤,西面的地亩产仅150公斤。因此,东面的地比西面的地产量高的原因是由于施用了过磷酸钙单质肥料。以下哪项如果为真,最能削弱上述论证?A.东面和西面两块地的土质不同。B.北面的地施用过硫酸钾单质肥料,亩产玉米220公斤。C.每块地种植了不同种类的四种玉米。D.两块地的田间管理无明显不同。E.给东面地施用的过磷酸钙是过期的肥料。
解题:这题很多文字游戏。每块地种植了不同种类的四种玉米,这个选项是说每块地都种了四种,而题目要的是不同。选A。
(2)某研究团队让两批测试者分别进入睡眠实验室里睡上一夜,第一批被安排睡得很晚,从而减少总睡眠时间;第二被安排睡得早,但在睡眠过程中多次被吵醒。第二晚过后,结果就已经显现:第二批测试者的积极情绪受到严重影响。他们的精力水平较低,同情心和友善度等积极情绪指数有所下滑、部分研究者据此认为,被吵醒导致了测试者无法得到足够的慢波睡眠,而慢波睡眠是恢复精力感的关键,但也有研究者对此项研究的可信度提出质疑。以下哪项如果为真,最能反驳质疑者?A.第一批测试者积极情绪的指数下滑程度不太明显B.第二批测试者中大部分人长期以来情绪不够积极C.两批测试者的健康状况和心理素质原本就很接近D.两批测试者在参与睡眠实验前精力水平参差不齐
解题:很多文字游戏,是每组自己比前后,不是两组比。选D。
(4)我国的佛教寺庙分布于全国各地,普济寺是我国的佛教寺庙,所以普济寺分布于我国各地。 下列选项中所犯逻辑错误与上述推理最为相似的是:A.父母酗酒的孩子爱冒险,小华爱冒险,所以小华的父母酗酒B.文明公民都是遵纪守法的,有些大学生遵纪守法,所以有些大学生是文明公民 C.寒门学子上大学机会减少,大学生小飞不是寒门学子,所以小飞上大学的机会不会减少 D.现在的独生子女娇生惯养,何况他还是三代单传的独苗呢
解题:考结构相似,要细化到大中小项。A选项结构细化后与题干不符。D选项有结构省略要手动还原。选D。
(4)“五岳归来不看山”,以下选项与上述推理方式最相近的是:A.疑是银河落九天B.桂林山水甲天下C.稻花香里说丰年D.二月春风似剪刀
解题:答案选B,且不能是从内容相近上推,而还是形式推理。都属于不完全归纳推理。AD是比喻,C是陈述。
(5)科学家发现,生活在大的群体之中的鸟类,比生活在孤独之中的鸟类大脑中有着更多的新的神经元,也有着更强的记忆力。他们据此向人类发出忠告:如果你是一个孤独者,你最好结交一些朋友,否则就会丧失你宝贵的脑细胞,导致记忆力低下。 下列哪项如果为真,最能反驳上述观点: A . 人类的大脑和鸟类根本不同 B . 人脑比鸟类大脑发达得多 C . 很多交友的人记忆力并不好 D . 很多孤独者的记忆力非常好
解题:此题选A还是选D有争议。作为公考题,它第一步要求看题型(训练你自上而下服从的思维方式),这是类比推理题,题干翻了不当类比的错误,因此A是最好的解释。第二步才是看论点论据之类。因为第一步已经出错了,那么第二步的错误更小,因此A>D因此选A。
(6)核电站所发生的核泄漏严重事故的最初起因,没有一次是设备故障,都是人为失误所致。这种失误,和小到导致交通堵塞,大到导致仓库失火的人为失误,没有实质性的区别。从长远的观点看,交通堵塞和仓库失火几乎是不可避免的。上述断定最能支持以下哪项结论?A 核电站不可能因设备故障而导致事故。B 核电站的管理并不比指挥交通、管理仓库复杂。C 核电站如果持续运作,那么发生核泄漏严重事故几乎是不可避免的。D 人们试图通过严格的规章制度以杜绝安全事故的努力是没有意义的。
解题:选C。
四、判断推理:智力推理
(1)立方体日历
题干:一个男人有两个木制的立方体,他可以用它们呈现出一个月从01号到31号的日子,每个面只能呈现1位数字。请问这两个立方体上都各有哪些数字?
解题:11、22数字重合,因此1和2要在两个立方上都出现。立方还剩8个空位。一个立方能写6个数字,而01-09有9个数字,这意味着两个立方上都有0。立方体还剩6个空位,但还有7个数字没排。因此利用中心对称图形,6的反面是9。因此刚好6个数字6个空位。
(2)错排问题:苹果与橙子
题干:三个箱子分别有苹果、橙子、苹果与橙子。它们上面贴的标签都错误。请从其中一个箱子里拿一个水果,得出每个箱子里都是什么。
解题:三者标签都错误,意味着不能出现两者对换的情况,必须三者间都有关系。标签“橙子”箱里一定不是橙子,标签“苹果”箱里一定不是苹果,标签“苹果与橙子”箱里一定不是苹果与橙子。从贴有“苹果与橙子”的箱子里拿,里面肯定不是苹果与橙子。设拿到橙子,那么标签为“橙子”箱的一定是苹果,标签“苹果”箱的一定是苹果与橙子。拿到苹果同理。所谓错排,及对于所有i,编号为i的元素都不在该排列的第i个位置上。
(3)称巧克力块(我称之为“权重问题”)
提问:有一堆巧克力(有余)装盘。有10个托盘,每个托盘10块巧克力。这100块巧克力各重100克,其中有一块105克超重了。只称1次,怎么找出这块巧克力所在的托盘?
解题:只称1次,意味着只要标记出托盘编号和权重即可。用增加巧克力块的方式标记,托盘1加1块,托盘2加2块,类推托盘10加10块,然后一起称。如果超重的在5号托盘,那么会比100*100=10000多出505来。如果在6号托盘,会多出605。网上说的减少巧克力块的方式标记不行,万一你把超重的那块减掉了,就称不出来了。
(4)快递加锁
提问:AB双人各自有钥匙可以开各自的挂锁。A要把钻石快递寄给给B而路上有小偷。要防小偷,就要加锁,但对方要能够开锁。问怎么办。
解题:A把有挂锁的快递邮给B。B收到后在上面加一把锁,再邮回给A。A收到后取掉自己的锁再邮给B。B收到快递即可开锁。
补充:这道题拒绝直线思维,不怕一波三折。我想起以前使用Photoshop的一个案例。有一个虚线圆,问如何把它变成实线圆。方法是:扩展它的边缘n个像素,直到边缘连在一起,再缩小n个像素,使之连在一起但粗细又和原来一致。
(5)三个逻辑学家喝酒
题目:有三个逻辑学家去喝酒。酒保问第一个教授:是不是都喝啤酒?第一个说不知道。第二个说不知道?第三个教授说是的。
解题:经典三值逻辑,多出的真值为“不知道”,即未确定值。如果第一个逻辑学家不喝,他会说“不喝”而不是说“不知道”。因此“不知道”的意思是:我喝,不知道他们喝不喝。因此第三个逻辑学家得出了都喝的结论。
(6)求出生日
题目:小明和小刚都是赵老师的学生,赵老师的生日是M月N日,两人都知道赵老师的生日是下列10组中的一天,赵老师把M值告诉了小明,把N值告诉了小刚,赵老师问他们知道他的生日是哪一天吗?
3月4日 3月5日 3月8日
6月4日 6月7日
9月1日 9月5日
12月1日 12月2日 12月8日
①小明说:我不知道,小刚肯定也不知道。
②小刚说:本来我也不知道,但是现在我知道了。
③小明说:哦,那我也知道了。
请根据以上对话推断出赵老师的生日是哪一天?
解题:根据①小刚不知道,得出日子不是唯一出现的日子,即不是2日、7日,所以排除所在的两个月份即6月和12月。②小刚这时候知道了,说明它在3月4日、3月8日或9月1日。③这时候小明知道了,那说明是月份唯一的那个,即9月1日。
另一个题目:已知小明的生日是下面几个日期之一,
5月15日,5月16日,5月19日
6月17日,6月18日
7月14日,7月16日
8月14日,8月15日,8月17日
小明把自己生日的“月”告诉了A,把自己生日的“日”告诉了B,然后让他们在不透漏自己所知答案的情况下推理小明的生日是哪天。A说“我不知道小明的生日是哪天,但我肯定B也不知道。”B说“我现在知道小明生日是哪天了。”A说“我现在也知道小明生日是哪天了。”
解题:由此可知,小明的生日是7月16日。A说“我不知道小明的生日是哪天,但我肯定B也不知道。”由此可知,月份肯定不是5或6,因为5月19日和6月18日中的19和18在所有数据中只出现了一次,如果是5月或6月的话,B是有可能只根据“日”来确定小明生日的。排除5月和6月之后,剩余的候选日期还有:
7月14日,7月16日
8月14日,8月15日,8月17日
B说“我现在知道小明生日是哪天了。”此时,7月和8月有个共同的“日”是14,但是B说已经知道小明生日了,所以肯定不是14日。排除14日之后,剩余的候选日期还有:
7月16日
8月15日,8月17日
A说“那我也知道小明生日是哪天了。”如果A知道的月份是8,那么他是无法知道剩余的8月份两个日期哪个是小明生日的,所以A知道的月份是7。剩余日期中只有一个是7月份的,所以最终确定小明生日是7月16日。

(7)分马
提问:古时候有一个老财主,他知道自己将不久于人世,便交给他的三个儿子一份事先拟好的遗嘱。遗嘱上说要将财主的17匹骏马分别分给三个儿子,大儿子将得到二分之一,二儿子得到三分之一,最小的儿子则得到九分之一。三个儿子这下可犯了难,无论怎么分都分不好,实在没有办法,便将他们的一位邻居请过来帮忙。老邻居看了遗嘱之后仔细地推敲了一番,然后很快就给他们分好了,三个儿子对结果都很满意。请问,老邻居是如何分配的?
解题:分数加起来为十八分之十七,借一匹即凑成一。老邻居将自家的一匹马牵了过来对他们说,我先借给你们一匹马,现在一共有18匹马,按照遗嘱上说的,老大分二分之一即9匹,老二分三分之一就是6匹,老三分九分之一则为2匹,剩下的一匹还是我的。
(8)爱因斯坦谁养鱼
问题概述:一条街上,五座房子,五种颜色。每座房子住着不同国家的人。每个人喝不同的饮料,抽不同的香烟,养不同的宠物。问谁养鱼? 提示: 1、英国人住红房子 ;2、瑞典人养狗 ;3、丹麦人喝茶 ;4、绿房子紧挨着白房子,在白房子左边 ;5、抽“长红”香烟的人养鸟; 6、绿房子主人喝咖啡;7、黄房子主人抽“登喜牌”香烟; 8、住中间房子的人喝牛奶; 9、挪威人住第一座房子(最左侧); 10、抽BLENDS香烟的人住养猫人隔壁; 11、养马人住抽“登喜牌”香烟人隔壁; 12、抽BLUEMASTER香烟的人喝啤酒 13、德国人抽PRINCE牌香烟 14、挪威人住蓝房子隔壁 15、抽BLENDS香烟的人有一个喝水的邻居。
解题:经典CSP问题。列表排除,好像需要猜一步。得德国人养鱼。
(9)递推买水
题干:1元钱可以买一瓶汽水,喝完后两个空瓶可以换一瓶汽水,问:你有20元钱,最多可以喝到几瓶汽水?
解题:解这种题的时候就可以用“递推法”,也就是自上而下、一步步地推理。第一步,1元钱一瓶,20元可以买20瓶。接着,喝完后有20个空瓶,可以换10瓶汽水。喝完还有10个空瓶,可以换5瓶汽水……如此一步步地推下去,就可以知道结果了。
补充:有人说这道题也可借个空瓶。但不行。这道题与分马的题目不同,分马是分数凑整数1,而这个不是,该有余数时有余数。
def soda(money,empty=0):
if money or empty>1:
return money+empty//2+soda(0,empty=empty-empty//2+money)
return 0
print(soda(20))
(10)街道排班
题干:小孔、小吴、小邓、小丁、小洪5人是某街道志愿者,某日他们被安排到南山、东江和北苑3个小区进行社区服务。已知: ①安排在南山小区的志愿者最少。每个小区安排1至2人,每人只在一个小区服务。 # ②若小邓、小丁中至少有1人安排在南山小区,则小吴安排在北苑小区 # ③若小孔、小邓、小丁中至少有1人安排在东江小区,则在北苑小区服务的只有小洪 # 由此可以推出: A.小吴安排在南山 B.小丁、小洪安排在东江 C.小吴、小邓安排在北苑D小邓、小丁在北苑
解题:矩阵列表,不在标记-1,在标1。#第一次修改:根据①③可得,北苑有2人,因此③不成立,因此小孔小邓小丁不在东江。表2行1、3、4为-1。即[1,0]、[1,2]、[1,3]下标为-1。 #第二次修改:因为第2行只有两个空位了,所以两个空位的值都要为1,即吴洪在东江。即[1,1],[1,4]下标为1。 #第三次修改:因为吴在东江不在北苑,因此邓丁不在南山,即[0,2],[0,3]下标为-1。 #第四次修改:因为南山必须要有1人,而符合的空位只有孔,即[0,0]下标为1。 #第五次修改:还剩邓丁没安排,它们在北苑,[2,2],[2,3]下标为1。 #所有的1已经出来了就懒得改矩阵了。
import numpy as np
matrix = np.zeros((3, 5))
matrix[1, 0], matrix[1, 2], matrix[1, 3] = -1, -1, -1
matrix[1, 1], matrix[1, 4] = 1, 1
matrix[0, 2], matrix[0, 3] = -1, -1
matrix[0, 0] = 1
matrix[2, 2], matrix[2, 3] = 1, 1
print('修改后矩阵为:\n', matrix)
'''
输出:
修改后矩阵为:
[[ 1. 0. -1. -1. 0.]
[-1. 1. -1. -1. 1.]
[ 0. 0. 1. 1. 0.]]
'''
(11)更相减损术求最大公因数
题目:求最大公因数
解题:举个例子,比如 98和63的最大公约数是7.98-63=35 63-35=28 35-28=7 28-7=21 21-7=14 14-7=7 这样之所以能求出来,是因为假定98和63最大公约数是M 那么98=a*M,63=b*M,a b都是正整数.98-63=35 所以这个差应该是(a-b)M 接下来M就可以看作是求63和35的公约数.那么M为什么又是63和35最大的公约数呢?假设有个数N是63和35最大的公约数而且N大于M,使得63=A*N,35=B*N.那么98=63+35=(A+B)N,也就是说98和63的最大公约数变成了N,这就与一开始矛盾了.于是这样循序渐进地减下去,M一直是2个数的最大公约数,最后可以得出M的值.还有另一种比较容易懂的理解方式.如果要求两个数X,Y的最大公约数T 把X,Y看成由若干个T组成的数.X:T T T T T T T T T…… Y:T T T T T…… 因为那么X-Y是啥意思呢?意思就是X比Y多的T构成的数,这样减的话这个差永远是整数个T,于是一直这样互相减下去,最后减出来肯定是只有一个T(遇到偶数除个2就行了),所以T是多少就浮出水面了。
while a!=b:
a=a-b
else:
b=b-a
print(a)
五、数量关系:
(1)一个箱子中有若干个玩具,每次拿出其中的一半再收回一个玩具,这样共拿了5次,箱子里还有5个玩具,箱子原有玩具的个数为:A.76 B.98 C.100 D.120
解题:经典猴子偷桃题。常规解法,设第5次结果为x=5,再算(x-1)*2算5次,得98。速解:排除法,第一次取走一半放回一个,仍能被2整除的只有98。
python代码如下:
#倒推
x = 5
for i in range(5):
x = (x-1)*2
print("第", 5- i,"次", x, "个")#i的范围没有直接限定,用次数限定的
#正推(出答案后检验)
x=98
count=0
for i in range(5):
x=x/2+1
count+=1
print([count],x)
haskell代码如下:
-- 倒推
x = 5 -- 初始值为5
x = 5 -- 初始值为5
reverse x = (x-1)*2 -- 计算函数,每次将x减1再乘2
loop x n = putStrLn $ "第" ++ show (5 - n) ++ "次," ++ show (reverse x) ++ "个" -- 输出结果
loop x 5 -- 开始循环
-- 正推
x = 98 -- 初始值为98
forward x = x / 2 + 1 -- 计算函数,每次将x除2再加1
loop' x n = putStrLn $ show n ++ "," ++ show (forward x) -- 输出结果
loop' x 5 -- 开始循环
(2)有粗细不同的两支蜡烛,细蜡烛的长度是粗蜡烛的2倍,点完细蜡烛需要1小时,点完粗蜡烛需要2小时。有一次停电,将两支蜡烛同时点燃,来电时,发现两支蜡烛所剩长度一样,则此次停电共停了多少分钟?A10分钟B20分钟C40分钟D60分钟
解题:要长度一样,细蜡烛至少要烧掉1半,那么超过30分钟。又不能烧完,烧完时长度不等。因此选C。
(3)有四个学生恰好一个比一个大一岁,他们的年龄相乘等于93024,问其中年龄最大的学生多少岁?A16 B18 C19 D20
解题:本题采用排除法和尾数法解答。 A选项:3×4×5×6的尾数为0; B选项:5×6×7×8的尾数为0; C选项:6×7×8×9的尾数为4; D选项:7×8×9×0的尾数为0; 年龄相乘尾数为4,而其他三种算出来都是0尾。选C。
count=0
a=4#假设最大年龄学生的初值
for a in range(100):
b=a*(a-1)*(a-2)*(a-3)
if b==93024:
print([count],a,b)
a+=1
count+=1
(4)王处长从东北捎来一袋苹果分给甲乙两个科室的人员,每人可分得6个,如果只分给甲科,每人可分得10个。问如果只分给乙科,每人可分得多少个?A8 B12 C15 D16
解题:设苹果数为最小公倍数,即30个,则总人数为30/6=5人。如果只分给甲,则甲科室30/10=3人,则乙科室为2人。则每人15个。
#求出最小公倍数
a = 6 # 初始值为10
b = 10 # 初始值为15
def lcm(a, b): # 定义计算函数
return (a * b) // gcd(a, b) # 返回结果
def gcd(a, b): # 定义计算函数
if a == 0: # 如果a等于0
return b # 返回b
return gcd(b % a, a) # 递归调用
result = lcm(a, b) # 计算出结果
print(result) # 输出结果30
#解方程组:6*(x+y)=30,10x=30
from sympy import Symbol,solve
x=Symbol('x')
y=Symbol('y')
expr1=6*(x+y)-30
expr2=10*x-30
z=solve((expr1,expr2),dict=True)
print(z)#会输出:[{x: 3, y: 2}]
#根据上述,已知y=2,则30/2=15
如果写成prolog代码:
以下是Prolog代码:
% 假设要求解方程组6x+6y-30=0,10x-30=0
solve(X, Y) :- X is (30 - 6 * Y) / 10, Y is 30 / 10. % 计算函数
solution(X, Y) :- solve(X, Y), write(X), write(Y). % 计算出结果
如果写成haskell代码:
-- 假设要求解方程组6x+6y-30=0,10x-30=0
x = 0 -- 初始值为0
y = 0 -- 初始值为0
solve x y = (30 - 6 * y) / 10, 30 / 10 -- 计算函数
solution = solve x y -- 计算出结果
print solution -- 输出结果
(5)某浇水装置可根据天气阴晴调节浇水量,晴天浇水量为阴雨天的2.5倍。灌满该装置的水箱后,在连续晴天的情况下可为植物自动浇水18天。小李6月1日0︰00灌满水箱后,7月1日0︰00正好用完。问6月有多少个阴雨天?A10 B16 C18 D20
解题:晴天浇水量为阴雨天的2.5倍,则设晴天浇水量为5,雨天浇水量为2,晴天连续浇18天用完则总量为5*18=90。设有x个阴雨天,则晴天为30-x。2x+5(30-x)=90,x=20。
haskell代码如下:
q m = [x|x <- [0.. 20], 2x+5(30-x) == m]
q 90
(6)为打开保险箱,需要输入密码,密码由7个数字组成,他们不是2就是3,密码中2比3的个数多,而且密码能被3和4整除,试求出这个密码是多少?A. 2323232 B. 2222232 C. 2222332 D. 2322222
解题:了解数字可被整除的特征属性。因为密码2比3多,所以2可能有4、5、6或7个。能被4整除的数字,其后两位数字能够被4整除。所以四个选项中,首先排除D项;能被3整除的数,要求各位数字和是3的整倍数。
Press any key to continue
#include
#include
main()
{
int i,j,flag,two,three;
char str[8]={0};
for (i=2222222;ithree) //如果里面只有2和3 并且能被3 和4 整除 而且2的个数大于3 则输出
{
printf("%d n",i);
}
}
}
(7)某单位组织参加理论学习的党员和入党积极分子进行分组讨论,如果每组分配7名党员和3名入党积极分子,则还剩下4名党员未安排;如果每组分配5名党员和2名入党积极分子,则还剩下2名党员未安排。问参加理论学习的党员比入党积极分子多多少人?A.16 B.20 C.24 D.28
解题:使用倍数特性,由于党员人数为(5y+2)名,入党积极分子人数为2y,两者差值=3y+2,推出(差值-2)是3的倍数,代入选项,只有B符合。或者解方程:7x+4=5y+2,3x=2y。
(8)某儿童艺术培训中心有5名钢琴师和6名拉丁舞教师。培训中心将所有的钢琴学员和拉丁舞学员共76人分别平均地分给各个老师带领,刚好能够分完,且每位老师所带的学生数量都是质数。后来由于学生人数减少,培训中心只保留了4名钢琴教师和3名拉丁舞教师,但每名教师所带的学生数量不变,那么目前培训中心还剩下学员多少名?A. 36 B. 37 C. 39 D. 41
解题:设钢琴学员x名,拉丁舞学员y名。5x+6y=76。76为偶数,则5x为偶数,x只能为偶数。题干说了是质数,偶质数只有2,因此x=2,y=11。
❤我是分割线❤
(1)和差倍比:某俱乐部中女会员的人数比男会员的一半少61人,男会员的人数比女会员的3倍多2人,问该俱乐部共有会员多少人?A.475人B.478人C.480人D.482人
解题:总人数加61能被3整除。
(2)日期:如果某一年的7月份有5个星期四,它们的日期之和为80,那么这个月的3日是星期几?
解题:构成等差数列,中项为80÷5=16。16是第3个周四,那么第1个周四是2号,那么3号周五。
(3)工程:一件工程甲独做50天可完,乙独做75天可完,现在两个人合作,但是中途乙因事离开几天,从开工后40天把这件工程做完,则乙中途离开了( )天。
解题:设公倍数150。3*40+2(40-t)=150,t=25。
(4)牛吃草:一片草地(草以均匀速度生长),240只羊可以吃6天,200只羊可以吃10天,则这片草地可供190只羊吃的天数?
解题:(200-x)*6=(240-x)*6=(190-x)t,x=140,t=12。
#牛吃草问题:牧场上有一片青草,每天都生长得一样快。这片青草供给10头牛吃,可以吃22天,或者供给16头牛吃,可以吃10天,如果供给25头牛吃,可以吃几天?
n1=10
t1=22
n2=16
t2=10
n3=25
x=(n1*t1-n2*t2)/(t1-t2)#草长速度
y=(n1-x)*t1#原草量
t3=y/(n3-x)
print(t3)
(5)年龄:甲对乙说:“当我的岁数是你现在的岁数时,你才3岁.”乙对甲说:“当我的岁数是你现在的岁数时,你将48岁.”那么甲现在多少岁?乙现在多少岁?
解题:代入法代入选项即可。
(6)利润:一件商品如果以八折出售,可以获得相当于进价20%的毛利,那么如果以原价出售,可以获得相当于进价百分之几?
解题:可以获得相当于进价百分之五十的利润。设商品原价为X元,进价为Y元,以八折出售即80%X,相当于进价的20%的毛利,即80%X-Y=20%Y那么X=1.5Y现以原价出售,那么利润=X-Y=1.5Y-Y=0.5Y利润占比=0.5Y/Y*100%=50%。
(7)数列:一张考试卷共10道题,后面每道题的分值都比前一道题多2分,如果这张考试卷满分100分,则第八题分值为?
解题:套公式解答案是15。
(8)容斥原理:有一次测验只有两道题目,全班40人中除了10人全对之外,题有16人做错,题有21人做错,那么两个题目都做错的有多少人?( ) A.5人 B.7人 C.9人 D.16人。
解题:略。
(9)排列组合:小王和他哥哥、姐姐、妹妹站成一排照相,有多少种不同的站法?( ) A.10 B.12 C.18 D.24
解题:有A44=24种。
(10)极值:有关部门要连续审核30个科研课题方案,如果要求每天安排审核的课题个数互不相同且不为零,则审核完这些课题最多需要( )天。A.7B.8C.9D.10
解题:互不相等且不为零,最多要多少天,则从1开始排,每天课题数为:1,2,3,4,5,6,7。7天。
(11)几何:略。
(12)行程:两辆汽车同时从两地相向开出,甲车每小时行驶60千米,乙车每小时行驶48千米,两车在离两地中点48千米处相遇,则两地相距( )千米。A.192 B.224 C.416 D.864
解题:从题干中我们发现两者的速度之比是5:4,因为他们所走的时间是相同的,所以,路程之比同样是5:4,这样,甲比乙多走一份,所以中间部分是距离端点4.5份,即0.5份对应的路程是48千米,所以S=48×18=864,答案选D。
六、资料分析:
自动找数:
# -*- coding: utf-8 -*-
article = '2015年1~3月,国有企业营业总收入103155.5亿元,同比下降6%。其中,中央企业收入63191.3亿元,同比下降7%。地方国有企业收入39964.2亿元,同比下降4.2%。1~3月,国有企业营业总成本100345.5亿元,同比下降5.1%,其中销售费用、管理费用和财务费用同比分别下降2.9%、增长2.3%和增长7.3%。其中,中央企业成本60216.5亿元,同比下降6.4%;地方国有企业成本40129亿元,同比下降3.1%。1~3月,国有企业利润总额4997.3亿元,同比下降8%。国有企业应交税金9383亿元,同比增长0.13%。3月末,国有企业资产总额1054875.4亿元,同比增长12%;负债总额685766.3亿元,同比增长11.9%;所有者权益合计369109.1亿元,同比增长12.2%。其中,中央企业资产总额554658.3亿元。同比增长10.5%;负债总额363304亿元,同比增长10.4%;所有者权益为191354.4亿元,同比增长10.7%。地方国有企业资产总额500217.1亿元,同比增长13.8%;负债总额322462.3亿元,同比增长13.7%;所有者权益为177754.7亿元,同比增长13.9%。106 、2014年1~3月,国有企业营业总收入最接近:'
keyword = '国有企业营业总收入'
# 遍历文章中的每个句子
for sentence in article.split('.'):
# 如果句子中包含关键词,就打印出来
if keyword in sentence:
print(sentence)
常用数据的转化:
'''
#乘法表
for row in range(10,20):
for col in range(1,row+1):
print('{}*{}={}'.format(col,row,col*row))
print()
#常用倍数数列
# 求数列n,2n,3n,4n,5n...10n的值
for n in range(11,50):
print([n],n,2*n,3*n,4*n,5*n,6*n,7*n,8*n,9*n) # 输出n,2n,3n,4n,5n...10n的值
#分数化小数
for i in range(1,20):
for j in range(1,20):
n=i/j
result=round(n,2)
print(i,"/",j,'=',result)
#乘法题目
import random
a = random.randint(10,99)
b = random.randint(10,99)
print(a,'*',b,'=','?')
ans = int(input("请输入乘法的结果:"))
if ans == a * b:
print("True",a,'*',b,'=',a*b)
else:
print("False",a,'*',b,'=',a*b)
# 输出1000以内的质数
for i in range(2,1001):
is_prime = True
for j in range(2,i):
if i % j == 0:
is_prime = False
break
if is_prime:
print(i)
#分解因数
#它首先从2开始,然后遍历这个范围内的所有数字,如果某个数字能够被三位数整除,
# 就说明这个数字是三位数的因数,最后将质因数打印出来。
num = 144 # 三位数
result = []
for i in range(2,num+1):
if num % i == 0:
result.append(str(i))
print(num,'的因数如下:',",".join(result)) # 输出2,7,14,49,98,196
'''
#分数化小数
for i in range(1,20):
for j in range(1,20):
n=i/j
result=round(n,2)
print(i,"/",j,'=',result)
增幅增速题:
# -*- coding: utf-8 -*-
#增幅计算题
#某汽车销售总额去年比前年增加8%,今年比去年增加13%,则增幅提高多少百分点?
# 计算某汽车销售总额的增幅
percent_last_year = 8 # 去年比前年增加8%
percent_this_year = 13 # 今年比去年增加13%
# 计算增幅
increase_percent = percent_this_year - percent_last_year
# 打印结果
print(increase_percent)
#2018年,我国谷物的播种面积为99685千公顷,其中玉米42129千公顷,小麦24268千公顷。则2018年,玉米播种面积占谷物播种面积的比重比小麦高多少?
# 计算2018年谷物播种面积的比重
total_area = 99685 # 千公顷
corn_area = 42129 # 玉米播种面积
wheat_area = 24268 # 小麦播种面积
# 计算玉米播种面积占谷物播种面积的比重
corn_percent = corn_area / total_area * 100
wheat_percent = wheat_area / total_area * 100
# 计算玉米播种面积占谷物播种面积的比重比小麦高多少
increase_percent = corn_percent - wheat_percent
# 打印结果
print(increase_percent)