调制方式的自动识别

本文探讨了调制识别的重要性和不同方法。从人工识别到基于最大似然和特征的自动化方法,再到神经网络的应用,阐述了调制识别的原理和实践。重点讨论了基于特征的模式识别,包括FB方法的优缺点,并列举了常见的特征参数。最后,介绍了神经网络结构和要素,如全连接前馈网络、卷积网络和循环网络在调制识别中的应用。
摘要由CSDN通过智能技术生成

引言

通信系统的基本框图一般的通信接收机工作于协作通信环境,收发双方预先约定好通信所用的信号调制方式调制参数载波频率等参数,甚至预先发送己知信息内容的引导序列,供接收方完成载波、比特同步和信道参数估计
数字通信截获接收机的通信框图
天线接收的射频通信信号经接收机的射频前端下变频、滤波放大后,输出中频带通通信信号。载波频率估计单元产生相干本振信号,正交下变频单元把中频通信信号与本振输出混频、滤波放大后,输出正交I/O两路复基带通信信号。码元同步单元估计基带通信信号的码速率,产生码元同步定时信号。利用码元定时信号采样匹配滤波器的输出,得到码元同步采样序列。符号判决单元根据调制识别单元辨识的信号调制样式,对采样序列进行判决解调。信息处理单元可对解调的比特信息做进一步的处理,例如拆帧、解密等。
依据已知或所需通信信号先验知识多少不同,可分别对接收机的中频信号、基带复信号或码元同步采样序列进行处理,实现调制识别算法。

调制的分类

模拟调制信号,数字调制信号,模拟和数字混合调制信号

调制识别方法分类

人工识别方法

人工识别方法
每一种解调器仅是针对单单一种调制类型而设计的,操作人员用耳机、示波器或频谱仪等对该输出信号进行分析。依据分析结果,确认调制方式或更换新的调制方式。之后重复上述步骤,直至得到最好的解调效果,最终确定接收信号的调制方式。

最大似然(Likelihood Based,LB)假设检验方法

先观察待识别的信号波形,为其赋予某一种候选调制类型。然后通过相似性原则,确定真正的调制方式。
具体来说,LB 方法基于接收信号的似然函数(Likelihood Function,LF),通过把似然比(Likelihood Ratio,LR)和对应阈值进行比较,作出判决。
调制识别LB方法
其中 x[k]为相互间独立、相同分布的离散接收样本,k = 0,1,…,N-1,N 为样本总数。由接收信号样本 x[k]组成向量 X
X = (x[0],x[1],…,x[N-1])^T
这里的上标 T 表示矩阵转置。假设共有 m 种调制方式,相应地,应有 m 种假设检验 Hi,这里 i = 0,1,…,m-1,则似然函数为:
L(X|Hi) = || p( x[k] | Hi ) ,i = 0,1,…,n-1
其中 p(x[k] | Hi) 为 Hi假设下接收到样本 x[k] 的概率。当满足下述条件时:
L(X|Hi) > L(X|Hj)时,j=0,1,…,m-1,j != i
认为接受信号属于m种调制方式中的第i种。

主要的LB调制识别器及应用的条件

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值