现在有两个好友A和B,住在一片长有蘑菇的由n*m个方格组成的草地,A在(1,1),B在(n,m)。现在A想要拜访B,由于她只想去B的家,所以每次她只会走(i,j+1)或(i+1,j)这样的路线,在草地上有k个蘑菇种在格子里(多个蘑菇可能在同一方格),问:A如果每一步随机选择的话(若她在边界上,则只有一种选择),那么她不碰到蘑菇走到B的家的概率是多少?
输入描述:
第一行N,M,K(1 ≤ N,M ≤ 20, k ≤ 100),N,M为草地大小,接下来K行,每行两个整数x,y,代表(x,y)处有一个蘑菇。
输出描述:
输出一行,代表所求概率(保留到2位小数)
#include<iostream>
#include<vector>
using namespace std;
int main(){
int N,M,K;
while(cin>>N>>M>>K){
vector<vector<int>> mat(N+1,vector<int> (M+1,0));
vector<vector<double>> dp(N+1,vector<double>(M+1,0));
int x,y;
for(int i=0;i<K;i++){
cin>>x>>y;
mat[x][y]=1;
}
//dp[i][j]=dp[i-1][j]+dp[i][j-1];
for(int i=1;i<=N;i++){
for(int j=1;j<=M;j++){
if(mat[i][j]==1){
dp[i][j]=0;
continue;
}
if(i==1 && j==1){
dp[i][j]=1;
continue;
}
if(i==N && j==M){
dp[i][j]=dp[i-1][j]+dp[i][j-1];
continue;
}
if(i==N){
dp[i][j]=dp[i-1][j]*0.5+dp[i][j-1];
continue;
}
if(j==M){
dp[i][j]=dp[i-1][j]+dp[i][j-1]*0.5;
continue;
}
if(i==1){
dp[i][j]=dp[i][j-1]*0.5;
continue;
}
if(j==1){
dp[i][j]=dp[i-1][j]*0.5;
continue;
}
dp[i][j]=dp[i-1][j]*0.5+dp[i][j-1]*0.5;
}
}
printf("%.2f\n",dp[N][M]);
}
return 0;
}