SQL数据类型

SQL数据类型是一个属性,该属性指定的任何对象的数据类型。在SQL中的每一列,变量和表达式相关的数据类型。


在创建表时,你会使用这些数据类型。会根据需要为表列中选择一个特定的数据类型。
SQL Server提供的数据类型供您使用的六大类:



精确数字数据类型:
数据类型
FROM
TO
bigint-9,223,372,036,854,775,8089,223,372,036,854,775,807
int-2,147,483,6482,147,483,647
smallint-32,76832,767
tinyint0255
bit01
decimal-10^38 +110^38 .1
numeric-10^38 +110^38 .1
money-922,337,203,685,477.5808+922,337,203,685,477.5807
smallmoney-214,748.3648+214,748.3647


近似数值数据类型:
DATA TYPE
FROM
TO
float-1.79E + 3081.79E + 308
real-3.40E + 383.40E + 38


日期和时间数据类型:
数据类型
FROM
TO
datetimeJan 1, 1753Dec 31, 9999
smalldatetimeJan 1, 1900Jun 6, 2079
dateStores a date like June 30, 1991
timeStores a time of day like 12:30 P.M.
注: 在此日期时间3.33毫秒精度为smalldatetime有1分钟的准确性。


字符串数据类型:
数据类型
FROM
TO
charcharMaximum length of 8,000 characters.( Fixed length non-Unicode characters)
varcharvarcharMaximum of 8,000 characters.(Variable-length non-Unicode data).
varchar(max)varchar(max)Maximum length of 231characters, Variable-length non-Unicode data (SQL Server 2005 only).
texttextVariable-length non-Unicode data with a maximum length of 2,147,483,647 characters.


Unicode字符串数据类型:
数据类型
描述
ncharMaximum length of 4,000 characters.( Fixed length Unicode)
nvarcharMaximum length of 4,000 characters.(Variable length Unicode)
nvarchar(max)Maximum length of 231characters (SQL Server 2005 only).( Variable length Unicode)
ntextMaximum length of 1,073,741,823 characters. ( Variable length Unicode )


二进制数据类型:
数据类型
描述
binaryMaximum length of 8,000 bytes(Fixed-length binary data )
varbinaryMaximum length of 8,000 bytes.(Variable length binary data)
varbinary(max)Maximum length of 231 bytes (SQL Server 2005 only). ( Variable length Binary data)
imageMaximum length of 2,147,483,647 bytes. ( Variable length Binary Data)


其他数据类型:
数据类型
描述
sql_variant存储各种SQL Server支持的数据类型值,除了text,ntext,和时间戳
timestamp存储一个数据库范围内的唯一号码得到更新,每一次一行得到更新
uniqueidentifier存储一个全局唯一标识符(GUID)
xml存储XML数据。可以将XML实例存储在一列或变量(只在SQL Server 2005)
cursor引用一个游标对象
table引用一个游标对象
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值