示例:Spark Streming+Kafka整合 (spark-streaming-kafka-0-8_2.11)

本文介绍了如何将Spark Streaming与Kafka进行整合,详细阐述了Receiver和Direct两种方式的启动流程,包括启动Zookeeper、Kafka、生产者,以及编写和运行相关代码来实现数据流处理。最后,提供了官方文档链接供深入学习。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

文章目录

Receiver

import org.apache.log4j.{
   Level, Logger}
import org.apache.spark.SparkConf
import org.apache.spark.streaming.kafka.KafkaUtils
import org.apache.spark.streaming.{
   Seconds, StreamingContext}

object kafka_Receiver_streaming {
   
  Logger.getLogger("org").setLevel(Level.WARN)
  def main(args: Array[String]): Unit = {
   
    val sparkConf = new SparkConf().setAppName(
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值