计算几何(基础)

这篇博客详细介绍了如何使用几何计算和线性代数的方法来解决图形处理中的问题,包括向量的外积、内积、角度计算、向量旋转、直线交点求解、点到直线和线段的距离计算以及线段相交的判断。内容涵盖了一系列基础数学概念及其在图形学中的实际应用。
#include <cstdio>
#include <iostream>
#include <cmath>
#include <utility>
#include <climits>
#include <cstring>
#define eps 1e-8
#define N_MAX 30005
using std::pair;
int n,m,xa,ya,xb,yb,ans[N_MAX];
int sign(double x){ //符号
    if(fabs(x) < eps)return 0;
    if(x < 0)return -1;
    return 1;
}
struct Point{
    double x,y;
    Point(double x = 0,double y = 0):x(x),y(y){}
    Point operator+(Point a){
        return Point(x + a.x,y + a.y);
    }
    Point operator-(Point a){
        return Point(x - a.x,y - a.y);
    }
    Point operator*(double t){
        return Point(x * t,y * t);
    }
    Point operator/(double t){
        return Point(x / t,y / t);
    }
    bool operator==(Point a){
        return x == a.x && y == a.y;
    }
    double lenth(){ //向量的模
        return sqrt(x * x + y * y);
    }
};
typedef Point Vector;
struct Line{
    Point a,b;
    Line(){}
    Line(Point a,Point b){
        this->a = a;
        this->b = b;
    }
}line[N_MAX];
double cross(Vector A,Vector B){  // 向量外积
    return A.x * B.y - B.x * A.y;
}
double dot(Vector A,Vector B){ //向量内积
        return B.x * A.x + B.y * A.y;
}
bool isclock(Vector v1,Vector v2){ // 判断v2是否在v1的顺时针方向
    if(cross(v1,v2) < 0)return true;
    return false;
}
double GetAngle(Vector v1,Vector v2){ // 两向量夹角
    return acos(dot(v1,v2) / v1.lenth() / v2.lenth());
}
Vector rotate(Vector v,double angle){ //向量v偏转angle后的位置
    return Vector(v.x * cos(angle) + v.y * sin(angle),-v.x * sin(angle) + v.y * cos(angle));
}
Point GetPointForLine(Line X,Line Y){ // 算直线交点
    Vector v = X.b - X.a;
    Vector w = Y.b - Y.a;
    Vector u = X.a - Y.a;
    double base = (cross(w,u)) / (cross(v,w));
    return X.a + v * base;
}
double DistanceForLine(Point P,Line X){ // 算点到直线的距离
    Vector vp = X.b - X.a,vq = P - X.a;
    return fabs(cross(vp,vq))/vp.lenth();
}
double DistanceForSegment(Point P,Line X){ //点到线段的距离
    if(X.a == X.b)return (P - X.a).lenth();
    Vector v1 = X.b - X.a,v2 = P - X.a,v3 = P - X.b;
    if(sign(dot(v1,v2)) < 0) return v2.lenth();
    if(sign(dot(v1,v3)) > 0) return v3.lenth();
    return DistanceForLine(P,X);
}
Point GetProjectionInLine(Point P,Line X){ //点到直线上的投影
    Vector v = X.b - X.a;
    return X.a + v * (dot(v,P - X.a) / dot(v,v));
}
bool PointOnSegment(Point P,Line X){ // 点是否在线段上
    return sign(cross(P - X.a,P - X.b)) == 0 && sign(dot(P - X.a,P - X.b)) <= 0;
}
bool SegmentIntersection(Line X,Line Y){ //两线段是否相交
    double c1 = cross(X.b - X.a,Y.a - Y.b),c2 = cross(X.b - X.a,Y.b - X.a);
    double c3 = cross(Y.b - Y.a,X.b - Y.a),c4 = cross(Y.b - Y.a,X.a - Y.a);
    return sign(c1) * sign(c2) <= 0 && sign(c3) * sign(c4) <= 0;
}
pair<Point,Point> PointWithCircleAndLine(Point o,Line X,double r){ // 求圆与直线的交点
    Point o2 = o;
    o2.x += X.a.y - X.b.y;
    o2.y += X.b.x - X.a.x;
    o2 = GetPointForLine(Line(o,o2),X);
    double base = sqrt(r * r - (o2 - o).lenth() * (o2 - o).lenth());
    Vector e = (X.b - X.a) / (X.b - X.a).lenth();
    return std::make_pair(o2 - e * base,o2 + e * base);
}
int main(int argc,char *argv[]){
   
    return 0;
}


评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值