tensorflow2.0
小舟%
这个人很懒,什么都没有留下
展开
-
使用tf.keras循环神经网络-实现航空评论数据的分类模型(tensorflow2.0)
RNN循环神经网络: 一个序列不仅与当前的输出有关,而且与面前的输出也有关。RNN主要是处理“序列数据”。 在传统的神经网络模型中,输入层->隐藏层->输出层,层与层之间是全连接的。 在RNN模型中:隐藏层之间的节点不再是无连接的而是有连接的,即:隐藏层的输入不仅包括输入层的输出,还包括上一刻隐藏层的输出。 具体表现形式为:RNN会对当前的信息进行记忆并应用于当前输出的计算中。 长短期记忆网络(LSTM,Long Short-Term Memory): LSTM 可以把几个时间之前的状态,直原创 2020-12-22 09:20:57 · 252 阅读 · 1 评论 -
使用tf.keras搭建CNN卷积神经网络识别Fashionmnist数据集
使用tf.keras搭建CNN卷积神经网络识别Fashionmnist数据集。 import tensorflow as tf from tensorflow import keras import matplotlib.pyplot as plt import pandas as pd import numpy as np #加载fishion mnist数据集 (train_image,train_lable),(test_image,test_lable)=tf.keras.datasets.fas原创 2020-12-21 16:15:05 · 1185 阅读 · 0 评论 -
优化函数、学习速率、反向传播算法
优化函数,学习速率与反向传播算法 #关于激活函数的选择: #(1.1)想预测一个连续的值, 输出层就不用激活函数 #(1.2)想预测一个是/否(也就是二分类的问题), 对输出层进行sigmoid运算,得到二分类输出 #(1.3)想进行多分类的预测的话,对输出层进行softmax运算,从而输出在多个分类上的概率分布 #梯度下降算法: #多层感知器的优化算法是梯度下降算法 #梯度下降法是一种致力于找到函数极值点的算法。 #梯度算法的输出是一个由若干偏导数构成的向量,它的每个分量对应于函数对输入向量的相应分量原创 2020-12-20 19:46:30 · 361 阅读 · 0 评论 -
使用tf.keras实现 独热编码 categorical_crossentropy
数据集还是Fashion minist 数据集。 什么是独热编码??#就是标志的这个位置时,就会变为1,其他的都会变成0。 import tensorflow as tf import pandas as pd import numpy as np import matplotlib.pyplot as plt (train_image,train_lable),(test_image,test_lable)=tf.keras.datasets.fashion_mnist.load_data() pr.原创 2020-12-20 19:12:24 · 1084 阅读 · 0 评论 -
使用tf.keras实现 softmax多分类的代码
** softmax多分类 ** #多分类问题的关键在于输出10个概率值,然后使用softmax进行激活 #“softmax激活函数”能把10个输出变为10个概率分布,然后这10个概率的和为1 #(1)“对数几率回归”解决的是“二分类的问题”,对于“多个选项”的问题,我们可以使用softmax函数,softmax是对数几率回归在N个可能不同的值上的推广 #(2)“神经网络的原始输出”不是一个概率值,实质上只是输入的数值做了“复杂的加权和与非线性处理”之后的一个值而已,那么如何将这个输出变为概率分布? #(3原创 2020-12-20 19:04:39 · 1369 阅读 · 0 评论 -
使用tf.keras实现多层感知器(神经网络)的代码实现(tensorflow2.0基础入门2)
** 逻辑回归与交叉熵 ** 1)线性回归预测的是一个连续的值 2)逻辑回归给出的”是”和“否”的回答 3)逻辑回归的激活函数 采用的是(sigmoid激活函数) sigmoid函数是一个概率分布函数,即给定某个输入,它将输出为一个0到1的概率值 4)对于分类问题,我们最好的使用交叉嫡损失函数会更有效,交叉嫡会输出一个更大的“损失”. 5)平方差损失也可以使用,但是要求:训练次数要非常多,训练速度要非常的慢。 平方差所惩罚的是与损失为同一数量级的情形. 交叉嫡损失函数: 1)交叉嫡刻画的是实际输出(概率原创 2020-12-19 21:58:35 · 274 阅读 · 3 评论 -
使用tf.keras实现线性回归(tensorflow2.0基础入门1 日月光华 )
tf.keras 是用于构建和训练深度学习模型的 TensorFlow 高阶 API。利用此 API,可实现快速原型设计、先进的研究和生产。 #这节我们先来使用tf.keras 实现一个简单的<单变量线性回归> #(1)要了解线性回归的原理 #(2)tf.keras训练的的一般步骤 import tensorflow as tf import pandas as pd import matplotlib.pyplot as plt #print('Tensorflow version: {}原创 2020-12-19 21:48:31 · 538 阅读 · 1 评论