java 反射

 1.Reflection(反射)

        是Java被视为动态语言的关键,Java 运行时系统始终为所有的对象维护一个被称为运行时的类型标识,做Class的类(一个类只有一个Class对象)。 这个信息跟踪着每个对象的所有信息。反射机制允许程序在执行期借助于Reflection API取得任何类的内部信息,并能直接操作任意对象的内部属性及方法。

 2,反射和正常运行不同                                 

 3 反射的功能

                在运行时判断任意一个对象所属的类

                在运行时构造任意一个类的对象

                在运行时判断任意一个类所具有的成员变量和方法

                在运行时获取泛型信息 在运行时调用任意一个对象的成员变量和方法

                在运行时处理注解 生成动态代理

 4 一些重要方法             

   获得相应的Class信息三种方式:

                   获得class办法一:通过对象获得 : Class clazz1 = person.getClass();

                   获得class办法二:通过字符串获得(包名+类名)  : Class clazz2 =                    Class.forName("com.reflection.Student"); 

                   获得class办法三:通过类的静态成员class获得  :Class clazz3 = Person.class;

                (外部类,成员(成员内部类,静态内部类),局部内部类,匿名内部类。 接口 数组                     枚举,基本数据类型都有其class对象)

对象实例化:

                        Object o1 = o.newInstance();

获得域:Class cl = Class.forName(name)为例)

                 Field[] fields = cl. getFields()  这个类或其超类的公有域

                 Field[] fields = cl.getDeclaredFieds() 了这个 类的全部域,如果类中没有域, 或者 Class 对象描述的是基本类型或数组类型, 这些 方法将返回一个长度为 0 的数组。

获得方法:(Class cl = Class.forName(name)为例)

                Method[] methods = cl.getMethods() 将返回所有的公有方法, 包括从超类继承来的公有方法

                Method[] methods = cl.getDeclaredMethods();返回这个类或接口的全部方法,但不包括由超类继承了的方法

                  Method  method= cl.getMethod("某个方法名","每有一个参数就写一个参数类型")    可以得到特定的方法名        

获得构造器:(Class cl = Class.forName(name)为例)

                Constructor[] constructors = cl.getConstructors() 

                Constructor[] constructors = cl.getDeclaredConstructors();

                返回包含 Constructor 对象的数组, 其中包含了 Class 对象所描述的类的所有公有构造器(getConstructors) 或所有构造器(getDeclaredConstructors) 

5. setAccessible Method和Field、Constructor对象都有setAccessible()方法。

               setAccessible作用是启动和禁用访问安全检查的开关。 参数值为true则指示反射的对象在使用时应该取消Java语言访问检查。 提高反射的效率。如果代码中必须用反射,而该句代码需要频繁的被调用,那么请设置为true。 使得原本无法访问的私有成员也可以访问 参数值为false则指示反射的对象应该实施Java语言访问检查

【源码免费下载链接】:https://renmaiwang.cn/s/3r450 支持向量机(Support Vector Machines,SVM)是机器学习领域一种强大的监督学习算法,尤其在分类和回归问题上表现出色。本章聚焦于通过Python 3.7实现支持向量机,提供详尽的代码注解,帮助读者深入理解其工作原理。一、支持向量机基本概念支持向量机的核心思想是找到一个最优超平面,该超平面能够最大程度地将不同类别的数据分开。超平面是特征空间中的一个决策边界,它由距离最近的训练样本(即支持向量)决定。SVM的目标是最大化这些最接近样本的距离,也就是所谓的间隔。二、SVM的两种类型1. 线性SVM:当数据线性可分时,SVM可以找到一个线性超平面进行分类。2. 非线性SVM:通过核函数(如高斯核、多项式核等)将低维非线性数据映射到高维空间,从而在高维中找到一个线性超平面进行分类。三、SVM的主要组成部分1. 决策函数:SVM使用超平面作为决策边界,形式为`w·x+b=0`,其中`w`是超平面的法向量,`b`是偏置项。2. 支持向量:位于最近间隔边缘的数据点,对超平面的位置至关重要。3. 软间隔:允许一部分样本落在决策边界内,通过惩罚项C控制误分类的程度。4. 核函数:用于实现非线性分类,如高斯核(RBF,Radial Basis Function):`K(x, y) = exp(-γ||x-y||^2)`,其中γ是调整核函数宽度的参数。四、Python实现SVM在Python中,我们可以使用Scikit-Learn库来实现SVM。Scikit-Learn提供了多种SVM模型,如`svm.SVC`(用于分类)、`svm.LinearSVC`(仅线性分类)和`svm.NuSVC`(nu版本的SVM,支持类别不平衡问题)。五、SVM的训练与预测流程1. 数据预处理:将数据归一化或标准化,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值