离散型随机变量及分布律
分布名称 \qquad\qquad\qquad | 记法 \qquad\qquad\qquad\qquad | 分布律 \qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad | 均值 E ( X ) E(X) E(X) \qquad\qquad\qquad | 方差 D ( X ) D(X) D(X) \qquad\qquad\qquad\qquad\qquad |
---|---|---|---|---|
伯努利分布 | X ∼ B ( p ) X\thicksim B(p) X∼B(p) | P ( X = k ) = p k ( 1 − p ) 1 − k , k = 0 , 1 P(X=k)=p^k(1-p)^{1-k},\quad k=0,1 P(X=k)=pk(1−p)1−k,k=0,1 | p p p | p ( 1 − p ) p(1-p) p(1−p) |
二项分布 | X ∼ B ( n , p ) X\thicksim B(n,p) X∼B(n,p) | P ( X = k ) = C n k p k ( 1 − p ) n − k , k = 0 , 1 , ⋯ , n P(X=k)=C_{n}^{k}p^k(1-p)^{n-k},\quad k=0,1,\cdots,n P(X=k)=Cnkpk(1−p)n−k,k=0,1,⋯,n | n p np np | n p ( 1 − p ) np(1-p) np(1−p) |
泊松分布 | X ∼ P ( λ ) X\thicksim P(\lambda) X∼P(λ) | P ( X = k ) = λ k k ! e − λ , k = 0 , 1 , ⋯ , n P(X=k)=\frac{\lambda^k}{k!}e^{-\lambda},\quad k=0,1,\cdots,n P(X=k) |