常见分布律、分布函数、概率密度表,伯努利分布、二项分布、泊松分布、几何分布、超几何分布、均匀分布、高斯分布、指数分布

这篇博客探讨了概率论中的离散型随机变量,包括伯努利、二项、泊松、几何、超几何分布,以及连续型随机变量如均匀和高斯分布。此外,还提到了指数分布,并触及了概率密度函数和分布律的概念。文章也提及了使用 LaTeX 编写数学公式的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

离散型随机变量及分布律

分布名称 \qquad\qquad\qquad 记法 \qquad\qquad\qquad\qquad 分布律 \qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad 均值 E ( X ) E(X) E(X) \qquad\qquad\qquad 方差 D ( X ) D(X) D(X) \qquad\qquad\qquad\qquad\qquad
伯努利分布 X ∼ B ( p ) X\thicksim B(p) XB(p) P ( X = k ) = p k ( 1 − p ) 1 − k , k = 0 , 1 P(X=k)=p^k(1-p)^{1-k},\quad k=0,1 P(X=k)=pk(1p)1k,k=0,1 p p p p ( 1 − p ) p(1-p) p(1p)
二项分布 X ∼ B ( n , p ) X\thicksim B(n,p) XB(n,p) P ( X = k ) = C n k p k ( 1 − p ) n − k , k = 0 , 1 , ⋯   , n P(X=k)=C_{n}^{k}p^k(1-p)^{n-k},\quad k=0,1,\cdots,n P(X=k)=Cnkpk(1p)nk,k=0,1,,n n p np np n p ( 1 − p ) np(1-p) np(1p)
泊松分布 X ∼ P ( λ ) X\thicksim P(\lambda) XP(λ) P ( X = k ) = λ k k ! e − λ , k = 0 , 1 , ⋯   , n P(X=k)=\frac{\lambda^k}{k!}e^{-\lambda},\quad k=0,1,\cdots,n P(X=k)
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值