如何理解Kosaraju算法?

  • 首先, 你得熟悉有向图(digraph)的深度优先搜索(DFS), 前序(preorder), 后序(postorder), 逆后序(reverse postorder), 有向图的逆(transpose graph);
  • 如果把一个强连通分量中的所有点浓缩(contract)成一个点, 那么原图G就变成了一个有向无环图(DAG);
  • 易证, 一个DAG至少有一个源(source)和一个汇(sink);(源,只有指出,汇,只有指进)
  • 如果我们从sink分量中的任一节点开始DFS, 那么我们就不能到达其他任何连通分量, 而只能遍历这个sink分量中的所有节点;
  • 我们要是能够很容易地就找到sink分量中的一个节点就好了, 可貌似并不是很容易;
  • 但我们可以很容易找到source分量中的一个点: 后序列表中的最后一个点(i.e. 逆后序列表中的第一个点). 注意, 后序列表中的第一个点并不一定在sink分量中;
  • 不过没有关系, G的逆(i.e. G')的source不就是G的sink么? 搞定!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值