- 首先, 你得熟悉有向图(digraph)的深度优先搜索(DFS), 前序(preorder), 后序(postorder), 逆后序(reverse postorder), 有向图的逆(transpose graph);
- 如果把一个强连通分量中的所有点浓缩(contract)成一个点, 那么原图G就变成了一个有向无环图(DAG);
- 易证, 一个DAG至少有一个源(source)和一个汇(sink);(源,只有指出,汇,只有指进)
- 如果我们从sink分量中的任一节点开始DFS, 那么我们就不能到达其他任何连通分量, 而只能遍历这个sink分量中的所有节点;
- 我们要是能够很容易地就找到sink分量中的一个节点就好了, 可貌似并不是很容易;
- 但我们可以很容易找到source分量中的一个点: 后序列表中的最后一个点(i.e. 逆后序列表中的第一个点). 注意, 后序列表中的第一个点并不一定在sink分量中;
- 不过没有关系, G的逆(i.e. G')的source不就是G的sink么? 搞定!
如何理解Kosaraju算法?
最新推荐文章于 2024-06-10 08:41:53 发布