- 博客(1515)
- 收藏
- 关注
原创 Exploring the NFL (No Free Lunch) Theorem in Machine Learning
The No Free Lunch (NFL) theorem is a critical concept in machine learning and optimization that challenges the notion of universal “best” algorithms. In this blog, we’ll break down what the NFL theorem means, how it applies to machine learning, and why it’
2024-09-23 16:50:16 427
原创 北京大学语言计算与互联网挖掘实验室招收实习与访问学生
实验室研究方向为自然语言生成与大模型,当前主要研究内容包括:1)NLG自动评价与质量控制:NLG数据集与评价指标的缺陷分析、NLG评价大模型构建、人机协同与可进化的NLG评价、文本纠错等;实验室现计划招收大二大三本科实习生(最好有计划在国内或国外攻读博士学位)与硕博士访问学生,如果你对NLG与大模型方向有研究兴趣(即有自驱力),且有比较充分的课外时间和精力,具备较好的编程能力和思维能力,欢迎发送个人介绍或简历,以及成绩单(仅本科生需要)到实验室邮箱:onelabpku@outlook.com。
2024-09-23 16:29:43 322
原创 策略估计方法质量评估:从一致性到误差分析
一致性是指当数据量足够多时,估计值是否收敛于策略的真实值。一致性是评估策略估计方法质量的一个重要标准。如果一个估计方法是一致的,那么随着数据量的增加,估计值将越来越接近策略的真实值。这是确保方法有效性的基本要求。
2024-06-29 19:24:43 581
原创 蒙特卡罗(MC)策略评估:理解首次访问与每次访问方法
蒙特卡罗策略评估是一种基于样本轨迹的评估方法,通过模拟多条完整的轨迹,估算特定策略下各状态的预期回报。其基本思想是通过平均多次回报,来近似估算值函数 (V^\pi(s))。在一个马尔可夫决策过程(MDP)中,给定策略 (\pi),从时间步 (t) 开始的总回报 (G_t) 定义为:( r_t ) 是在时间步 (t) 的即时奖励。(\gamma) 是折扣因子,介于0和1之间。(T_i) 是轨迹的终止时间步。
2024-06-29 19:22:28 1052
原创 蒙特卡罗(MC)策略评估:强化学习中的简单高效方法
在一个马尔可夫决策过程(MDP)中,给定策略 (\pi),从时间步 (t) 开始的总回报 (G_t) 定义为:( r_t ) 是在时间步 (t) 的即时奖励。(\gamma) 是折扣因子,介于0和1之间。(T_i) 是轨迹的终止时间步。
2024-06-29 19:18:16 573
原创 策略评估方法详解
策略评估的目标是估算在特定策略下,智能体从某一状态开始所能获得的预期累积奖励。这一过程在没有真实MDP模型的情况下尤为重要,因为我们无法直接计算出预期回报。蒙特卡罗策略评估通过生成大量样本路径,来估算在特定策略下的状态值函数。这些样本路径是在给定策略下,从初始状态开始一直到终止状态的完整序列。时间差分方法通过在每一步更新值函数,而不需要等到整个序列结束。这种方法结合了蒙特卡罗方法和动态规划的优点。确定性等效方法假设当前估计的模型是准确的,并使用动态规划方法来更新值函数。
2024-06-29 19:08:15 859
原创 CS234 Quiz : 价值迭代与策略迭代
在强化学习中,价值迭代(Value Iteration)和策略迭代(Policy Iteration)是求解马尔可夫决策过程(MDP)的两种重要算法。为了更好地理解它们,我们将通过两个问题来探讨这些算法的特性和行为。
2024-06-29 18:59:22 332
原创 直接偏好优化:一种新的强化学习与人类反馈(RLHF)方法
直接偏好优化(DPO)为强化学习与人类反馈(RLHF)提供了一种新的方法,通过优化人类偏好,实现了高效的奖励模型训练和策略优化。未来的研究将进一步探索DPO在不同领域和应用中的潜力,提升其鲁棒性和适用性。希望本文通过详细的解释和实例,能够帮助读者更好地理解DPO及其在RLHF中的应用。
2024-06-29 18:47:48 1302
原创 马尔可夫过程或马尔可夫链:记忆无关的随机过程
马尔可夫过程是一种“记忆无关”(Memoryless)的随机过程,其基本特征是未来的状态只依赖于当前的状态,而与过去的状态无关。这种性质被称为马尔可夫性质(Markov Property)。状态集(States, S):一个有限的状态集合,记为 ( s \in S )。状态转移概率(Transition Probabilities, P):描述系统在不同状态之间的转移概率。
2024-06-29 18:35:47 859
原创 马尔可夫奖励过程(MRP):强化学习中的基础概念
MRP可以看作是带有奖励的马尔可夫链。状态集(States, S):一个有限的状态集合,记为 ( s \in S )。状态转移概率(Transition Probabilities, P):描述系统在不同状态之间的转移概率。具体来说, ( P(st+1 = s’|st = s) ) 表示在时刻 ( t ) 系统处于状态 ( s ) 时,在时刻 ( t+1 ) 转移到状态 ( s’ ) 的概率。奖励函数(Reward Function, R):描述在每个状态 ( s ) 处所能获得的期望奖励。
2024-06-29 18:34:17 870
原创 全可观测性:马尔可夫决策过程(MDP)
MDP是用于建模决策问题的一种数学框架,适用于全可观测环境,即智能体在每个时间步长都能完全观察到当前状态。状态集(States, S):描述系统可能的状态。动作集(Actions, A):描述智能体在每个状态下可以采取的动作。状态转移概率(Transition Probabilities, P):描述在状态 ( s ) 采取动作 ( a ) 后转移到状态 ( s’ ) 的概率 ( P(s’|s, a) )。奖励函数(Reward Function, R)
2024-06-29 18:31:21 407
原创 强化学习中的关键概念和方法:从基础定义到实现技巧
马尔可夫过程是一个随机过程,描述了系统在不同状态之间的转移。其基本特征是“无记忆性”,即未来状态只依赖于当前状态,与过去状态无关。
2024-06-29 18:29:49 662
原创 强化学习术语:模型、策略和值函数
在强化学习中,模型指的是对环境动态和奖励的数学描述。状态转移概率(Transition Probability):描述在某个状态下采取某个动作后转移到另一个状态的概率。奖励函数(Reward Function):描述在某个状态下采取某个动作所获得的即时奖励。通过这些数学模型,我们可以模拟和预测环境的行为,从而更好地制定策略。策略是一个函数,它将状态映射到动作。简单来说,策略告诉智能体在每个状态下应该采取什么动作。策略可以是确定性的,也可以是随机性的。
2024-06-29 18:27:02 892
原创 价值迭代与策略迭代:理解强化学习中的两大经典算法
价值迭代是一种动态规划算法,其核心思想是通过不断更新每个状态的价值,最终收敛到最优值函数,从而确定最优策略。策略迭代是一种迭代优化算法,其核心思想是通过不断评估当前策略的价值,并基于这些价值选择更好的策略,直到收敛到最优策略。
2024-06-29 18:19:08 912
原创 有限时间范围策略:策略是否随时间变化?
在强化学习中,有限时间范围问题指的是决策者在一个固定的时间范围内(例如H步)需要做出一系列决策,以最大化总奖励。为了求解这一问题,我们通常会使用价值迭代算法来确定每个状态下的最优策略。在有限时间范围内,最优策略通常是随时间变化的。这是因为在不同的时间步长下,决策者的目标和考虑因素会有所不同。通过价值迭代算法,我们可以在每个时间步长上找到最优策略,并根据当前的时间步长和状态,选择最优动作。这种随时间变化的策略在实际应用中具有广泛的意义。
2024-06-29 18:17:51 394
原创 在有限时间范围内计算策略的价值
通过模拟方法,我们可以在不依赖马尔可夫结构的情况下估算策略的价值。这种方法的优势在于简单直观,并且适用范围广泛。通过生成大量回合并计算平均总奖励,我们可以得到策略的估计价值,并利用集中不等式了解估计的可靠性。在实际应用中,模拟方法常用于复杂环境下的策略评估和优化,如自动驾驶、游戏AI等。通过不断的模拟和调整,我们可以逐步优化策略,从而实现更高效、更智能的决策。希望本文的介绍能够帮助读者更好地理解和应用这一强大的方法。
2024-06-29 18:16:06 420
原创 价值迭代:有限时间范围内的优化策略
价值迭代是一种强大的算法,通过逐步更新价值函数和策略,我们可以在有限时间范围内找到最优策略。本文通过简单的实例和公式推导,深入浅出地介绍了价值迭代的基本原理,希望能帮助读者更好地理解和应用这一算法。价值迭代不仅在理论上有重要意义,在实际应用中也非常广泛,如机器人路径规划、智能推荐系统等。通过不断探索和优化,我们可以在更多领域看到价值迭代的身影,为我们的生活带来更多便利和智能化体验。
2024-06-29 18:13:37 478
原创 深入浅出:置信区间的统计量方法
统计量方法是利用样本统计量(如样本均值、样本标准差等)来构建置信区间的一种方法。通过对样本数据进行分析,我们可以得到对总体参数的一个区间估计,这个区间称为置信区间。统计量方法是构建置信区间的一种基础且实用的方法。通过利用样本统计量和选定的分布,我们可以简便地估计总体参数的置信区间。希望这篇文章能帮助你理解并应用统计量方法,让你在数据分析和统计推断中更加得心应手。希望你喜欢这篇文章,我们下次再见!
2024-05-19 16:52:58 1137
原创 深入浅出:置信区间的枢轴量方法
枢轴量(Pivotal Quantity)是指一种依赖于样本数据和未知参数的统计量,但其分布与未知参数无关。通过构建枢轴量,我们可以将未知参数的估计问题转换为已知分布的问题,从而方便地构建置信区间。枢轴量方法是构建置信区间的一种强大工具。利用枢轴量的已知分布,我们可以简便地估计总体参数的置信区间。希望这篇文章能帮助你理解并应用枢轴量方法,让你在数据分析和统计推断中更加得心应手。希望你喜欢这篇文章,我们下次再见!
2024-05-19 16:49:31 1430
原创 深入浅出:揭开置信系数的神秘面纱
置信系数(Confidence Level)是置信区间的一个核心概念,表示置信区间包含总体参数的概率。通常用百分数表示,如90%、95%或99%。例如,95%的置信系数意味着在重复抽样的过程中,有95%的置信区间会包含真正的总体参数。置信系数是统计推断中一个重要且基础的概念。它为我们提供了估计值的可靠性衡量标准,使我们能够在数据分析和决策过程中更加自信。希望本文能够帮助你更好地理解置信系数,并在实际应用中灵活运用这一概念。希望你喜欢这篇文章,我们下次再见!
2024-05-19 16:45:20 938
原创 深入浅出:置信区间和置信限的一般方法
置信区间(Confidence Interval,简称CI)是一种区间估计方法,用于估计总体参数的区间范围。具体来说,如果我们对一个总体参数进行估计,置信区间就是围绕这个估计值的一个区间,我们有理由相信这个区间内包含了真正的总体参数。置信限(Confidence Limits)则是置信区间的两个端点,即上置信限和下置信限。置信区间和置信限是统计学中非常重要的概念,它们为我们提供了一种量化估计值可靠性的方法。通过合理的置信区间计算,我们可以更好地理解数据,做出更准确的决策。
2024-05-19 16:39:58 534
原创 谈谈卡方分布中的自由度:深入浅出指南
自由度(Degrees of Freedom,简称 DoF)是统计学中的一个关键概念,用来描述独立信息的数量。简单来说,自由度是指在计算某个统计量时,可以自由变动的数值个数。例如,在计算样本方差时,自由度是样本量减去一个,因为样本均值已经被估计出来。
2024-05-19 16:29:05 2119
原创 深入浅出卡方分布:统计学中的万能钥匙
卡方分布(Chi-Square Distribution)是一种概率分布,用于描述一组独立标准正态随机变量平方和的分布情况。简单来说,如果你有 ( k ) 个独立的标准正态随机变量 ( Z_1, Z_2, \ldots, Z_k ),它们的平方和:服从自由度为 ( k ) 的卡方分布。
2024-05-19 16:15:21 722
原创 方差的置信区间:深入浅出指南
方差的置信区间是用于估计总体方差的一个范围。它告诉我们,在一定的置信水平下(通常是95%或99%),总体方差落在这个区间内的可能性有多大。相对于单一的点估计,置信区间提供了一个范围,使得我们对估计的可信度更有信心。
2024-05-19 16:10:42 864
原创 方差的置信区间:深入浅出指南
\( \chi^2_{\alpha/2, n-1} \) 和 \( \chi^2_{1-\alpha/2, n-1} \) 分别是卡方分布在 \( \alpha/2 \) 和 \( 1-\alpha/2 \) 处的分位数,对应自由度为 \( n-1 \)。为了计算方差的置信区间,我们需要一些基本的统计知识。假设我们有一个样本 \( X = \{x_1, x_2, \ldots, x_n\} \),样本方差为 \( s^2 \)。方差的置信区间是一个强大的统计工具,帮助我们在不确定性中找到确定的范围。
2024-05-19 16:06:10 437
原创 期望的置信区间:深入浅出指南
假设我们有一个样本 \( X = \{x_1, x_2, \ldots, x_n\} \),样本均值为 \( \bar{X} \),样本标准差为 \( s \)。简单来说,它是对总体均值进行区间估计的一种方法,比起单一的点估计,它给我们提供了更多的信息。期望的置信区间是一个强大的统计工具,帮助我们在不确定性中找到确定的范围。3. **确定置信水平**:假设我们选择95%的置信水平,对于 \( n-1 = 6 \) 的自由度,查 t 分布表得到 \( t_{0.025, 6} = 2.447 \)。
2024-05-19 16:02:24 440
原创 矩估计方法:统计学中的秘密武器
假设我们有一组数据,想估计正态分布 \( N(\mu, \sigma^2) \) 的均值 \( \mu \) 和方差 \( \sigma^2 \)。2. **设定方程**:根据正态分布的理论矩,均值 \( E(X) = \mu \),方差 \( E((X - \mu)^2) = \sigma^2 \)。1. **计算样本矩**:样本均值 \( \bar{X} \) 和样本方差 \( S^2 \)。- **不一定最优**:在某些情况下,矩估计方法可能不是最优的估计方法,比如方差较大的情况下。
2024-05-19 15:58:18 394
原创 探究Salient Span Masking:技术专家也能会心一笑
不像传统的Masked Language Model(MLM)会随机地遮住一些单词让模型猜,Salient Span Masking直奔重点,专挑文中的「香味十足」部分——也就是信息量大的token(词汇单元),比如专业名词或是关键短语,来进行遮挡。Salient Span Masking学的就是这门“捡重点”的手艺,把机器引导至文本的精髓所在,效仿我们阅读时的重点标记习惯,提升语言模型的高效学习能力。牢记哟,唯有不断学习和实践,才能保持在技术的巅峰,嗯,至少在会议上装逼也得装得心安理得。
2024-02-16 14:34:20 917
原创 活用CDF:统计学中的隐藏英雄
累积分布函数或许不是最光鲜亮丽的统计学概念,但它的实用性和灵活性使其成为任何数据科学家和统计学家工具箱中不可或缺的工具。通过今天的探索,希望你已经对CDF有了更深入的理解,并准备好在自己的数据分析项目中应用它。
2024-01-28 01:55:21 958
原创 泊松分布:数学中的意外之喜
泊松分布,以法国数学家西莫恩·德尼·泊松命名,是描述在一定时间内发生某事件次数的概率分布。这听起来可能有点抽象,但别担心,我来用一个简单的例子解释。假设你经营着一个小而受欢迎的网上杂货店。根据过去的数据,你知道平均每小时会有3个顾客下单。那么,在接下来的一小时内恰好有5个顾客下单的概率是多少呢?这就是泊松分布登场的时刻。泊松分布是数学中一个美妙而强大的工具,它提醒我们,即使在最不可预测的情况下,数学仍然能够提供深刻的见解。所以,下次当你想探索周围世界的奥秘时,不妨以泊松分布为指导。
2024-01-27 23:29:34 1374
原创 无尽连接的纽带:计算机网络套接字详解
套接字是计算机网络中应用层与传输层之间的接口。它为应用程序提供了一种机制,使得不同主机上的应用程序可以进行通信。在套接字的设计中,常见的分类包括面向连接的套接字(SOCK_STREAM)和面向无连接的套接字(SOCK_DGRAM)。套接字作为计算机网络中重要的工具之一,扮演着连接不同主机上应用程序的纽带。通过本文的讲解,我们详细了解了套接字的定义、分类、创建、绑定、连接、监听、数据传输以及关闭与释放等方面的知识。相信在今后的网络编程中,你能够更加熟练地运用套接字进行网络通信。
2023-09-29 14:47:34 548
原创 计算机系统: PPO(物理页偏移)详解
PPO,即物理页偏移,是指计算机内存系统中页面访问的一种方式。在虚拟内存系统中,每个进程有自己的虚拟地址空间,这些虚拟地址需要通过内存管理单元(MMU)转换为物理地址才能访问实际的物理内存。PPO是指物理地址中用于表示页面内偏移量的部分。物理地址由页框号(PFN)和偏移量两部分组成,其中偏移量即为PPO。通过PPO,我们可以确定所需数据在物理页面中的位置,从而进行有效的内存访问。
2023-09-22 16:29:41 632
原创 计算机系统:Closing marks详解,超全
Closing marks是计算机系统中一个重要的概念,它表示一个进程的结束点。在计算机系统中,每个进程都有自己的生命周期,在执行完任务后,必须通过Closing marks显式地告知系统该进程已经完成。在本篇博客中,我们详细介绍了计算机系统中Closing marks的含义和作用。Closing marks在计算机系统中起着重要的作用,用于释放资源、更新进程状态以及向其他进程发送通知。我们还介绍了Closing marks的几种实现方式,包括函数返回值、系统调用和信号。
2023-09-18 23:33:42 460
原创 深入剖析 dup2 函数:掌握文件描述符的神器
在 Unix-like 系统中,文件描述符(File Descriptor)是一种用于标识已打开文件或资源的整数。它是操作系统提供给用户程序访问文件或输入输出设备的接口。每个打开的文件都会被分配一个唯一的文件描述符,程序通过操作文件描述符来读取或写入文件。它的作用是将 oldfd 所指的文件描述符复制到 newfd,并且返回 newfd。如果 newfd 已经打开,则先关闭 newfd,再进行复制。该函数成功时返回新的文件描述符,失败时返回 -1,并设置相应的错误码。
2023-09-18 23:33:04 1208
原创 互动无界:揭秘计算机系统中的Standard I/O黑科技!
标准输入输出指的是计算机程序与外部环境(如终端、文件等)进行数据交互的方式。在Unix和类Unix系统中,标准输入输出被称为stdin、stdout和stderr。其中,stdin用于接收输入数据,stdout用于输出普通信息,stderr用于输出错误信息。本文全面介绍了计算机系统中标准输入输出的概念和使用方法。我们详细讨论了标准输入、标准输出和标准错误输出的含义和使用技巧,并简单介绍了文件重定向的用法。通过深入理解和灵活运用标准输入输出,我们能够更好地编写高质量的计算机程序和系统。
2023-09-18 23:31:28 282
原创 开启计算机系统的新世界:深入解析I/O重定向
I/O重定向是指将一个程序默认的输入或输出流(通常是标准输入和标准输出)重新定向到其他的设备或文件。通过I/O重定向,我们可以改变程序与用户或其他程序之间的数据流动方向,实现更灵活的数据处理和交互方式。
2023-09-18 23:30:29 347
原创 计算机系统揭秘:Open File Table解密,全面详解!
本文详细介绍了Open File Table的原理、功能以及在计算机系统中的作用。作为连接用户与文件之间的桥梁,OFT为文件访问和管理提供了便利,同时也为系统资源的优化和性能的提升做出了贡献。通过深入理解OFT的工作原理,我们能更好地利用计算机系统中的文件功能,提高程序的效率和性能。
2023-09-18 23:28:43 353
原创 计算机系统: 文件共享详解
文件共享是计算机系统中非常重要的一个功能,它可以方便地在多个计算机之间传输和分享文件。无论是在个人生活中还是在工作场所,文件共享都扮演着至关重要的角色。本文将详细介绍文件共享的概念、原理、常用协议以及相关安全性问题。
2023-09-18 23:28:02 1745
原创 计算机系统核心组成部分的descriptor table
总之,描述符表是计算机系统中非常重要的一部分,它允许CPU访问内存和外设。为了保证安全性和可靠性,描述符表通常由操作系统内核来管理,以确保只有授权的进程能够访问特定的内存段,同时还需要遵循内存保护和安全规则。本篇文章简单介绍了x86架构计算机中的三种描述符表形式:系统段描述符表(SDT),全局描述符表(GDT)和局部描述符表(LDT),以及选择符,这些都是重要的机制,对于理解计算机系统的核心组成部分非常关键。
2023-09-18 23:27:11 268
原创 揭秘计算机系统中的File Metadata,探寻数字世界的秘密
在计算机系统中,文件是我们日常工作和生活中不可或缺的一部分。然而,除了文件内容本身外,文件还有一些隐藏的信息,被称为文件元数据(File Metadata)。本文将深入剖析文件元数据的概念、作用以及常见的元数据类型,带领大家一起探寻数字世界的秘密。文件元数据是指描述文件属性和特性的数据,它与文件内容本身无直接关联。它储存了文件的各种信息,如文件名称、大小、创建时间、修改时间、访问权限等。通过文件元数据,计算机系统能够管理、搜索、归档和保护文件。下面,我们将逐一介绍一些常见的文件元数据类型。
2023-09-18 23:26:33 610
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人