MapReduce的介绍

MR简述:
MapReduce是一种分布式计算模型,由Google提出,主要用于搜索领域,解决海量数据的计算问题。
 
MapReduce是分布式运行的,由两个阶段组成:Map和Reduce,Map阶段是一个独立的程序,有很多个节点同时运行,每个节点处理一部分数据。Reduce阶段也是一个独立的程序,有很多个节点同时运行,每个节点处理一部分数据。
 
MapReduce框架都有默认实现,用户只需要覆盖map()和reduce()两个函数,即可实现自己逻辑的分布式计算,非常简单。
 
另外这两个函数的形参和返回值都是,使用的时候一定要注意构造。
 
MapReduce在多于10PB数据时趋向于变慢
 
主节点:MRAppMaster
MRAppMaster:
 
1.接收客户端提交的计算任务
 
2.把计算任务分给nodeManager的Container中执行,即任务调度
 
3.监控Container中Task的执行情况
 
Task:
1.执行任务
 
MR1与MR2的不同(hadoop1与Hadoop2的不同):
 
MR1:
JobTracker负责global的资源调度和应用管理
 
TaskTracker负责per-node的Task执行
 
MR2:
ResourceManager;负责global的资源调度
 
ApplicationMaster负责per-application的管理
 
NodeManager:负责per-node的Task执行

如图所示:


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值