RDD支持两种类型的操作算子:Transformation(转换)与Action(行动)。
1、Transformation(变换)
Transformation操作会由一个RDD生成一个新的 RDD。Transformation操作是延迟计算的,也就是说从一个RDD转换生成另一个RDD的转换操作不是马上执行,需要等到Actions操作时,才真正开始运算。
例如,根据谓词匹配情况筛选数据就是一个常见的转化操作。
>>> testlines = lines.filter(line=>line.contains("spark"))
在transformations算子中再将数据类型细分为value数据类型和key-value对数据类型的transformations算子。
1)Value型数据的算子封装在RDD类中可以直接使用。
2)Key-value对数据类型的算子封装于PairRDDFunctions类中,用户需要引入import org.apache.spark.SparkContext._才能够使用。
2、Action(行动)
Action操作会对 RDD 计算出一个结果,并把结果返回到驱动器程序中,或把结果存储到外部存储系统(如 HDFS)中。
例如,first() 就是我们之前调用的一个行动操作,它会返回 RDD 的第一个元素。
>>> result = testlines.first()
transformations操作和Action操作的区别在于Spark计算RDD 的方式不同。对于在任何时候得到的新的RDD,Spark只会惰性计算。只有在一个行动操作中用到时,才会真正计算。这种策略也是spark性能高的部分原因。
比如,我们读取一个文本文件创建一个RDD,然后把其中包含spark的行筛选出来。如果Spark在我们运行lines = sc.textFile(test.txt) 时就把文件中所有的行都读取到内存中并存储起来,内存开销会很大,而我们接下来的操作会筛选掉其中的很多数据。相反, 如果Spark 在知道了完整的转化操作链之后,它就可以只计算求结果时真正需要的数据。
事实上,在执行行动操作 first()时,Spark也只是扫描文件直到找到第一个匹配的行为止,而不是读取整个文件。