读书笔记《利用Python进行数据分析》 第一章 准备工作

1.本书主要内容

本书是机器学习的基础,主要讲解利用Python对数据进行控制、处理、整理、分析。即机器学习环节中的数据清洗环节,使数据具有结构化特征。

重点介绍高效解决各种数据分析问题的Python语言和库。

2.为什么要使用Python进行数据分析

简单易学,使用的人多,库多,灵活。

(1)把Python当做粘合剂

把多种语言结合到一起

(2)解决“两种语言”问题

减少移植环节

(3)为什么不选Python

缺点:比较耗时,电脑效率低

3.重要的Python库

(1)Numpy

快速的数组处理

算法之间传递数据的容器

(2)pandas

快速快捷的处理结构化数据

DataFrame

适合金融分析

(3)matplotlib

(4)IPython

更好的交互

(5)Scipy

科学计算

4.安装和设置

没仔细看,Python之前就装好了,使用windows10环境

集成开发环境(IDE)

IPython外加一个文本编辑器

5.社区和研讨会

6.使用本书

(1)讲解IPython环境

(2)介绍Numpy的关键特性

(3)介绍pandas

(4)综合运动Numpy,pandas,matplotlib进行数据分析

(5)Numpy的高级功能

 

惯例,行话

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值