1.本书主要内容
本书是机器学习的基础,主要讲解利用Python对数据进行控制、处理、整理、分析。即机器学习环节中的数据清洗环节,使数据具有结构化特征。
重点介绍高效解决各种数据分析问题的Python语言和库。
2.为什么要使用Python进行数据分析
简单易学,使用的人多,库多,灵活。
(1)把Python当做粘合剂
把多种语言结合到一起
(2)解决“两种语言”问题
减少移植环节
(3)为什么不选Python
缺点:比较耗时,电脑效率低
3.重要的Python库
(1)Numpy
快速的数组处理
算法之间传递数据的容器
(2)pandas
快速快捷的处理结构化数据
DataFrame
适合金融分析
(3)matplotlib
(4)IPython
更好的交互
(5)Scipy
科学计算
4.安装和设置
没仔细看,Python之前就装好了,使用windows10环境
集成开发环境(IDE)
IPython外加一个文本编辑器
5.社区和研讨会
6.使用本书
(1)讲解IPython环境
(2)介绍Numpy的关键特性
(3)介绍pandas
(4)综合运动Numpy,pandas,matplotlib进行数据分析
(5)Numpy的高级功能
惯例,行话