深度学习
文章平均质量分 62
普通网友
这个作者很懒,什么都没留下…
展开
-
139不用安装环境即可训练中药饮片数据集+识别检测
不过这里都是cpu训练环境,支持Windows下的无环境安装运行,如果是其他像linux系统或mac系统的,就需要在自己电脑上安装环境,而不能用我这个给你已经弄好的python文件夹里面的环境了。运行02train.py即可训练模型,这里深度学习的环境也是在python文件夹里面了,所以都不需要安装,直接运行即可。通过复制python文件夹的python.exe的绝对路径即可运行这个环境,无需自己再另外安装环境,下载即可使用。最后在ui界面上点击加载自己的感兴趣的图片识别即可。然后依次运行py文件,原创 2024-02-29 21:06:32 · 330 阅读 · 0 评论 -
140不用安装python深度学习环境也能进行岩石数据集的训练和识别
不过这里都是cpu训练环境,支持Windows下的无环境安装运行,如果是其他像linux系统或mac系统的,就需要在自己电脑上安装环境,而不能用我这个给你已经弄好的python文件夹里面的环境了。080python农业病虫害检测pyqt版本_含10多种模型包括alexnet、DenseNet、DLA、GoogleNet、Mobilenet、Re。089基于深度学习的小样本数据检测_含10多种模型包括alexnet、DenseNet、DLA、GoogleNet、Mobilenet、Re。原创 2024-02-29 21:03:54 · 900 阅读 · 0 评论 -
141基于CNN对是否是大黄蜂识别-无需安装python-pytorch环境运行
当然也可以自行在自己电脑安装环境,与本代码里面的python文件夹并不冲突。不过这里都是cpu训练环境,支持Windows下的无环境安装运行,如果是其他像linux系统或mac系统的,就需要在自己电脑上安装环境,而不能用我这个给你已经弄好的python文件夹里面的环境了。运行02train.py即可训练模型,这里深度学习的环境也是在python文件夹里面了,所以都不需要安装,直接运行即可。通过复制python文件夹的python.exe的绝对路径即可运行这个环境,无需自己再另外安装环境,下载即可使用。原创 2024-02-29 21:02:24 · 462 阅读 · 0 评论 -
142基于SegNet图像分割算法的积水区域检测识别
本期给大家介绍的是142基于SegNet图像分割算法的积水区域检测识别。运行03pyqt.py会有个可视化的ui界面,加载自己感兴趣的图片进行识别即可。Dataset文件夹下的数据集是jpg格式的原图加标好水区域的蒙版图png。运行02train.py能够读取训练集和验证集的图片和蒙版图进行训练模型。代码是十分的简介,主要是3个py文件和一个数据集文件夹dataset。运行01mask数据集划分.py会将数据集划分成训练集和验证集。或讲解逐行代码(小白也能快速掌握理解代码),下载本代码环境自行安装。原创 2024-02-29 21:00:58 · 462 阅读 · 1 评论 -
144基于CNN的水果蔬菜识别-不用安装环境下载即可运行
代码主要是data文件夹存放数据集,和3个py文件,分别用于运行01数据集制作,02训练模型,03pyqt的可视化ui界面。不过这里都是cpu训练环境,支持Windows下的无环境安装运行,如果是其他像linux系统或mac系统的,就需要在自己电脑上安装环境。运行02train.py即可训练模型,这里深度学习的环境也是在python文件夹里面了,所以都不需要安装,直接运行即可。通过复制python文件夹的python.exe的绝对路径即可运行这个环境,无需自己再另外安装环境,下载即可使用。原创 2024-02-29 20:58:46 · 276 阅读 · 0 评论 -
145基于python目标检测的漂浮垃圾检测
080python农业病虫害检测pyqt版本_含10多种模型包括alexnet、DenseNet、DLA、GoogleNet、Mobilenet、Re。089基于深度学习的小样本数据检测_含10多种模型包括alexnet、DenseNet、DLA、GoogleNet、Mobilenet、Re。083基于深度学习的手势识别小程序版本_含10多种模型包括alexnet、DenseNet、DLA、GoogleNet、Mobilenet。原创 2024-02-29 20:56:58 · 743 阅读 · 0 评论 -
146基于yolox的火灾和烟雾检测
运行01数据集制作.py会将datasets文件夹下的JPEGImages(jpg或png图片)和Annotations(xml标签)进行读取生成txt文本,里面存放了图片路径和对应的标签。运行02train.py能够读取txt文本内容结合图片进行训练模型,训练好的模型保存在weights文件夹下。运行04pyqt.py会有个pyqt的可视化界面,通过点击按钮可以加载感兴趣的图片进行识别。本期给大家介绍的是146基于yolox的火灾和烟雾检测。或逐行代码注释(小白也能快速掌握理解代码),原创 2024-02-29 20:55:33 · 691 阅读 · 0 评论 -
147基于CNN卷积网络的可回收垃圾分类-免安装python环境下载即可运行
代码主要是data文件夹存放数据集,和3个py文件,分别用于运行01数据集制作,02训练模型,03pyqt的可视化ui界面。Python和深度学习环境pytorch都下载在本地python文件夹下,无需安装环境,下载代码后按上述指令运行即可使用。运行02train.py即可训练模型,这里深度学习的环境也是在python文件夹里面了,所以都不需要安装,直接运行即可。通过复制python文件夹的python.exe的绝对路径即可运行这个环境,无需自己再另外安装环境,下载即可使用。然后依次运行py文件,原创 2024-02-29 20:50:11 · 299 阅读 · 0 评论 -
148基于yolov7的鱼类检测
运行01数据集制作.py会将datasets文件夹下的JPEGImages(jpg或png图片)和Annotations(xml标签)进行读取生成txt文本,里面存放了图片路径和对应的标签。运行02train.py能够读取txt文本内容结合图片进行训练模型,训练好的模型保存在weights文件夹下。运行04pyqt.py会有个pyqt的可视化界面,通过点击按钮可以加载感兴趣的图片进行识别。或逐行代码注释(小白也能快速掌握理解代码),代码是十分的简介,主要是4个py文件。如需远程安装环境运行,原创 2024-02-29 20:47:21 · 181 阅读 · 0 评论 -
149使用python基于CNN的150种动物识别
代码主要是data文件夹存放数据集,和3个py文件,分别用于运行01数据集制作,02训练模型,03pyqt的可视化ui界面。最后运行03pyqt.py就是可视化的界面,在ui界面上点击加载自己的感兴趣的图片识别即可。本期给大家介绍的是149使用python基于CNN的150种动物识别。运行02train.py即可训练模型。训练好的模型也是保存在logs文件夹下。运行之后就会在logs文件夹下生成txt文本。如需讲解逐行代码(小白也能快速掌握理解代码),里面存放的是图片路径和对应的标签。原创 2024-02-29 20:45:25 · 217 阅读 · 0 评论 -
150基于python深度学习的睁眼闭眼检测
运行01数据集制作.py会将data文件夹下的JPEGImages(jpg或png图片)和Annotations(xml标签)进行读取生成txt文本保存在labels文件夹下,里面存放了图片对应的标签。运行02train.py能够读取txt文本内容结合图片进行训练模型,训练好的模型保存在runs文件夹下。运行04pyqt.py会有个pyqt的可视化界面,通过点击按钮可以加载感兴趣的图片进行识别。运行03predict.py可以调用训练好的模型对单张图片进行检测。或逐行代码注释(小白也能快速掌握理解代码),原创 2024-02-29 20:41:32 · 299 阅读 · 0 评论 -
151基于python目标检测的深海鱼fish检测
089基于深度学习的小样本数据检测_含10多种模型包括alexnet、DenseNet、DLA、GoogleNet、Mobilen。084基于CNN卷积神经网络的核桃品质检测_含10多种模型包括alexnet、DenseNet、DLA、GoogleNet、Mo。083基于深度学习的手势识别小程序版本_含10多种模型包括alexnet、DenseNet、DLA、GoogleNet、Mob。056基于python的图像识别含评价指标_精确率_召回率_f1score')原创 2024-02-26 23:42:57 · 938 阅读 · 0 评论 -
156基于深度学习的花卉检测小程序含检测结果简介
089基于深度学习的小样本数据检测_含10多种模型包括alexnet、DenseNet、DLA、GoogleNet、Mobilen。084基于CNN卷积神经网络的核桃品质检测_含10多种模型包括alexnet、DenseNet、DLA、GoogleNet、Mo。083基于深度学习的手势识别小程序版本_含10多种模型包括alexnet、DenseNet、DLA、GoogleNet、Mob。117nlp自然语言处理-文本情感分类-joy-sadness-anger-fear-love-surprise')原创 2024-02-26 23:39:57 · 1050 阅读 · 0 评论 -
159基于yolov8的嘴巴lip关键点检测含数据集训练pyqt界面
089基于深度学习的小样本数据检测_含10多种模型包括alexnet、DenseNet、DLA、GoogleNet、Mobilen。084基于CNN卷积神经网络的核桃品质检测_含10多种模型包括alexnet、DenseNet、DLA、GoogleNet、Mo。083基于深度学习的手势识别小程序版本_含10多种模型包括alexnet、DenseNet、DLA、GoogleNet、Mob。016基于CNN卷积网络的人脸识别打卡签到_resnet_mobilenet_efficientnet等')原创 2024-02-26 23:33:47 · 573 阅读 · 0 评论 -
001基于pyqt和卷积网络CNN的中文汉字识别
运行02train.py可以读取txt记录的图片数据进行训练,训练的模型保存在本地,其中提供了10多种的模型可以任意的切换。包括:efficientnet、Alexnet、DenseNet、DLA、GoogleNet、Mobilenet、ResNet、ResNext、ShuffleNet、Swin_transformer、VGG等。最后运行03pyqt.py可以展示一个可视化的交互界面,通过点击按钮来识别,这里弹出的界面上提供了第一个按钮为在画板上控制鼠标写出汉字识别。第二个按钮为加载汉字图片进行识别。原创 2024-02-21 21:02:02 · 170 阅读 · 0 评论 -
002基于深度学习图像分割的墙体裂缝识别检测
运行03pyqt.py可以有一个可视化的交互界面,界面有两个按钮有两个显示图片框,背景有动态图,颜色每次加载都会显示不一样。自制数据集需要使用labelme工具对图片中裂缝部分进行打标,最好安装labelme==3.16.7环境。运行02train.py训练这些的图片数据集,训练好的模型保存在weights文件下。运行01make_dataset.py文件能将图片数据转化成特定的格式。左侧图片点击加载感兴趣的图片,点击右侧按钮即可识别结果。或逐行代码注释(小白也能快速掌握理解代码),如需远程安装环境运行,原创 2024-02-21 21:00:42 · 283 阅读 · 0 评论 -
003基于python深度学习的水果或其他物体识别小程序
Alexnet、DenseNet、DLA、GoogleNet、Mobilenet、ResNet、ResNext、ShuffleNet、Swin_transformer、VGG等。运行03flask_server.py可以生成一个http接口连接小程序端和代码端,将小程序传来的图片调用本地训练好的模型识别之后再返回给小程序界面展示。数据集图片放置在data文件夹下,大家可以根据自己需要比如识别其他物体,只需要模仿data文件夹下的文件命名放入图片即可运行训练模型了。小程序端代码直接导入该文件夹即可。原创 2024-02-21 20:59:36 · 319 阅读 · 0 评论 -
004基于传统检测算法hog+svm实现目标检测
运行02pyqt.py会有一个可视化的界面,通过点击按钮加载图片识别。需要检测的目标对象数据集放在positive文件夹下。不需要的检测对象放在negative文件夹下。训练结束后会保存模型在weights文件夹下。或逐行代码注释(小白也能快速掌握理解代码),运行01train_SVM.py即可训练。数据集在data文件夹下。下载本代码环境自行安装。如需远程安装环境运行,原创 2024-02-21 20:58:13 · 219 阅读 · 0 评论 -
005基于传统检测算法hog+svm实现图像多分类
运行02pyqt.py会有一个可视化的界面,通过点击按钮加载图片识别。或逐行代码注释(小白也能快速掌握理解代码),数据集在datasets文件夹下。运行01train.py即可训练。训练结束后会保存模型在本地。下载本代码环境自行安装。如需远程安装环境运行,原创 2024-02-21 20:56:25 · 194 阅读 · 0 评论 -
006人流跟踪pyqt界面_v5_deepsort
每个版本都在算法结构、网络设计和性能方面进行了改进,从YOLOv1到YOLOv5,不断提高了目标检测的速度和准确率,使其成为计算机视觉领域中备受关注的算法之一。综合来说,YOLOv5 DeepSORT是一个强大的多目标跟踪系统,通过结合先进的目标检测和跟踪算法,能够在实时视频中准确地检测和跟踪多个目标,具有广泛的应用潜力,包括监控、自动驾驶、人机交互等领域。YOLOv5 DeepSORT是一个结合了YOLOv5和DeepSORT算法的目标检测与多目标跟踪系统。或逐行代码注释(小白也能快速掌握理解代码),原创 2024-02-21 20:54:30 · 513 阅读 · 0 评论 -
007CycleGAN_风格迁移+qt界面
这意味着输入一个图像到模型中进行转换后再转回原始域,应该能够恢复原始图像,从而保持图像之间的一致性。生成器负责将一个域中的图像转换成另一个域中的图像,而判别器则负责区分生成的图像和真实图像。CycleGAN是一种用于图像转换的深度学习模型,它能够将一个域中的图像转换成另一个域中的图像。具体而言,CycleGAN可以在两个不同的图像域之间进行无监督的图像转换,例如将马的图像转换成斑马的图像。它为无监督的图像转换提供了一种有效的解决方案,使得我们能够在不需要配对训练数据的情况下进行域间图像转换。原创 2024-02-21 20:52:49 · 307 阅读 · 0 评论 -
008yolov4口罩目标检测识别
本次是使用yolov4目标检测做口罩的识别,包括已经做好标签的口罩数据集和整个代码的运行。01create_txt.py是对标签文件生成train.txt保存路径在黎明。02train.py是将txt中的路径读取训练模型保存在weights文件夹下。04pyqt界面.py是可交互的ui界面,可打开本地文件夹选择要识别的图片。数据集放在了dataset文件夹下,有口罩原图和对应的xml标签文件。03predict.py是调用模型对单张图片的预测。或逐行代码注释(小白也能快速掌握理解代码),原创 2024-02-21 20:51:34 · 182 阅读 · 0 评论 -
009中草药识别小程序
再使用02resnet迁移学习.py读取txt文本中的数据进行训练,得到的模型保存在当前文件夹下为model.ckpt文件。小程序部分就是设置了界面然后提供了上传图像或拍照的接口将获取的图像传给服务端识别结果再接收。算法部分包括中草药的数据集文件夹下放的是不同类别的中草药文件夹,搜集对应的中草药图即可。01训练数据集文本生成.py会对中草药图像的路径进行保存到txt文本中。或逐行代码注释(小白也能快速掌握理解代码),代码文件包括算法部分和小程序部分。本次是中草药的小程序识别。下载本代码环境自行安装。原创 2024-02-21 20:50:22 · 272 阅读 · 0 评论 -
010基于vgg的CT_COVID与CT_NonCOVID二分类识别
dataset文件夹存放的是是否感染COVID的图像 通过01训练数据集文本生成.py将数据集文件夹下的图像路径保存在当前文件下的test.txt,和train.txt中,再运行02VGG16迁移学习训练模型.py读取txt中的数据进行训练。得到的模型保存为当前文件下的model.ckpt.然后运行03预测.py可以调用上一步保存的模型对单张图片进行识别。04pyqt界面.py是展示可视化的ui界面,可以通过点击按钮加载图片识别。或逐行代码注释(小白也能快速掌握理解代码),下载本代码环境自行安装。原创 2024-02-21 20:49:26 · 250 阅读 · 0 评论 -
011汉字识别crnn_qt界面
运行03文字识别界面程序.py如效果图所示的可视化ui操作界面,通过点击按钮加载要识别的单张图片即可。本次是汉字识别,使用crnn对10w张中文句子图像进行训练得到的模型识别。再运行02detect.py可以调用模型对单张图片进行识别,或逐行代码注释(小白也能快速掌握理解代码),直接运行01train.py即可开始训练,得到的模型存放在weights文件夹下。data文件夹下放的就是10w张数据。下载本代码环境自行安装。如需远程安装环境运行,原创 2024-02-21 20:48:37 · 238 阅读 · 0 评论 -
012yolov3口罩识别检测_是否佩戴规范检测_qt界面
其中dataset文件夹下放的是口罩数据集,有图片和对应的标签文件,标签文件记录的是口罩的位置信息。通过运行03predict.py可以实现单个图片中口罩是否佩戴和是否规范的检测。通过运行01create_txt.py可以将图片路径保存在txt文本里,在运行02train.py训练图片保存模型到weights文件下。04pyqt界面.py是打开一个可视化的ui界面,提供交互使用。或逐行代码注释(小白也能快速掌握理解代码),下载本代码环境自行安装。如需远程安装环境运行,原创 2024-02-21 20:47:39 · 236 阅读 · 0 评论 -
013yolov3交通牌检测_CCTSDB数据集检测
使用多层特征融合进行上下文建模:为了更好地利用图像的上下文信息,YOLOv3引入了多层特征融合的策略,将不同层次的特征进行融合,使模型能够更好地理解目标与背景之间的关系。单阶段检测:YOLOv3采用了单阶段的检测策略,将物体的检测和分类任务合并到一个神经网络中,直接从输入图像中预测目标位置和类别,而不需要借助额外的候选区域生成过程。多尺度特征提取:YOLOv3通过使用不同尺度的特征图来检测不同大小的目标。它引入了多个检测层,每个检测层负责检测一系列大小的目标,并通过级联的方式进行综合预测。原创 2024-02-21 20:46:21 · 425 阅读 · 0 评论 -
014人脸识别打卡签到系统pyqt界面
其中dataset文件下是放着各种人脸,通过train.py文件进行训练,得到的模型放在 logs文件夹下。然后通过运行01real_time_face_recognition.py可打开摄像头进行实时检测,调用训练好的模型检测当前人脸是谁,然后再进行打卡签到。人脸识别是一种将人脸图像或视频中的人脸进行自动检测、识别和验证的技术。它是生物特征识别的一种形式,通过分析人脸的几何特征、颜色信息和纹理特征等,将人脸与已知的人脸库进行比对或者判断是否匹配。或逐行代码注释(小白也能快速掌握理解代码),原创 2024-02-21 20:45:23 · 285 阅读 · 0 评论