我是丁师兄,专注于智能驾驶方向大模型落地,公众号:丁师兄大模型。
大模型1v1学习,已帮助多名同学上岸国内外大厂
大家好,我是丁师兄。
很多同学觉得,我学了这么多机器学习深度学习算法,还学了大模型训练、微调、推理优化,最后入职的工作就是写写提示词,调调开源模型,干一些边角料的杂活儿,特别没有成就感,就像下面这个同学一样。
不过这里我想说两点:
第一,新人进公司其实 90% 都不会直接让你干模型调优的活,大部分可能还是配环境,搭链路,处理数据。这些都干熟以后,才会让你跑一些模型实验。其中比较出色的同学,才会慢慢让你们接触线上业务。
第二,刚毕业的同学,尽量不要选择国企(家里有矿除外),大模型的岗位,或者说其他 IT 方向的技术岗,在国企都是学不到东西的,这个懂得都懂。国企比较适合在互联网打拼多年之后躺平养老,刚毕业的同学尽量还是去互联网学技术,刷背景,攒能力。上面这个兄弟,刚毕业选择去国企,结果发现学不到东西,算是跳坑里了。
继续来看今天的内容,这段时间我不是在集中招聘嘛,面了很多候选人,清华,北大,华五,包括一些海外的学校都有,所以也准备给大家集中分享一些面试的情况,帮助大家备战秋招。
就拿昨天面的一个复旦女生来说吧,大模型方向,简历还不错,做过 RAG 项目,因此围绕着 RAG 问了一些问题。
01 如何提高大模型的准确性和可靠性并且使回答可验证?
我们可以使用 RAG 来做,通过在生成回答之前,从外部的知识库中检索相关信息来优化输出。
RAG