A题:
题目链接: http://codeforces.com/contest/335/problem/A
题意: 给一个串s 和整数n ,问串s最少可以用多少个长度为n的另一种串ans(每个串都相同)组合成.
输出最小数目和可能的那种串, 不可能则输出-1.
分析:
算法一(模拟):
Ⅰ,当s中的字母种数大于n, 则不可能.
Ⅱ,在s中出现次数多的字母,在ans中也应该多. ⑴可以先将s中出现过的字母都加一个到ans中.
⑵若此时结果串的长度小于n, 则找到需要当ans串最多的那个字母, 将其加一个到ans中.
⑶依此重复⑵,直到长度达到n.
算法二(二分查找):
这是看到tourist 思路写的,果然巧妙........
以需要长度为n的串ans的个数进行二分查找, 每次求出当假设有mid个串时,这个串需要的最小长度,
如果大于n, 说明mid个肯定不够, 得往后一半找, 反之往前一半找.
代码: (模拟)
#include<iostream>
#include<string>
using namespace std;
int a[28],b[28];
int main(){
string s,f;
int n,m=0;
cin>>s>>n;
int len=s.size();
for(int i=0;i<len;++i)
++a[s[i]-'a'];
for(int i=0;i<26;++i)
if(a[i]) f+=char(i+'a'),++m,++b[i];
if(m>n) {
cout<<-1<<endl;
return 0;
}
for(int i=1,mj;i<=n-m;++i){
double Max=0;
for(int j=0;j<26;++j)
if(a[j]){
double k=(double)a[j]/b[j];
if(k>Max) Max=k, mj=j;
}
f+=char(mj+'a');
b[mj]++;
}
int ans=1;
for(int i=0;i<26;++i)
if(a[i]){
ans=max(ans,a[i]/b[i]+(a[i]%b[i]?1:0));
}
cout<<ans<<endl;
cout<<f<<endl;
return 0;
}
代码: (二分)
#include<iostream>
#include<string>
#include<cstring>
using namespace std;
int num[28];
int main(){
string s;
int n; cin>>s>>n;
int len=s.size();
for(int i=0;i<len;++i) num[s[i]-'a']++;
int l=1, r=len+1; /// 结果值的两个极限范围
while(l<r){
int mid=(l+r)>>1;
int need=0;
for(int i=0;i<26;++i)
need+=(num[i]+mid-1)/mid; /// 防止num[i]不是整除mid时要另外加1
if(need>n) l=mid+1;
else r=mid;
}
if(l==len+1){
cout<<-1<<endl; return 0;
}
int ans=l, tot=0;
cout<<ans<<endl;
for(int i=0;i<26;++i){
int k=(num[i]+ans-1)/ans;
tot+=k;
while(k--)
cout<<char(i+'a');
}
n-=tot;
while(n--) cout<<'a';
cout<<endl;
return 0;
}
B题:
题目链接: http://codeforces.com/contest/335/problem/B
分析: 第一眼看上去串的长度为5*10^4, 冒似只能用O(n)的算法可解. 而这样的算法从来没见过......
其实不然, 注意一个条件"如果有存在长度为100的回文子串则输出长度为100的,否则输出最长的",
可以发现: 一个长度大于100的回文串都可以变成长度为100的
如: 长度为101的只要删除中间的一个就变为长度为100的,
长度为102的删除中间两个也变为长度为100的......
意思就是, 得到的结果串的长度一定小于等于100.
又因为原串中全为小写字母, 所以最多出现26个字母,
还可以发现, 当长度达到2600时, 肯定会出现长度为100回文子串, 因为肯定会有一个字母出现次数大于等于100
也就是说, 最终, 我们最后取2600个字母, 那么可以用O(n^2)(这里n<=2600) 算法...........
代码:
#include<iostream>
#include<cstdio>
#include<string>
using namespace std;
const int maxn=2601;
int dp[maxn][maxn]; ///dp[i][j]表示区间[i,j]中回文子串的长度
int L[maxn][maxn];
int R[maxn][maxn];
int main(){
string s; cin>>s;
int len=min(maxn,(int)s.size());
for(int i=0;i<len;++i)
dp[i][i]=1;
for(int i=1; i<len; ++i)
for(int j=0; j+i<len; ++j) {
int k=j+i;
if(dp[j+1][k]>dp[j][k]) {
dp[j][k]=dp[j+1][k];
L[j][k]=j+1;
R[j][k]=k;
}
if(dp[j][k-1]>dp[j][k]) {
dp[j][k]=dp[j][k-1];
L[j][k]=j;
R[j][k]=k-1;
}
if(s[j]==s[k]&&dp[j+1][k-1]+2>dp[j][k]) {
dp[j][k]=dp[j+1][k-1]+2;
L[j][k]=j+1;
R[j][k]=k-1;
}
}
int ans=min(dp[0][len-1],100);
char ch[102]="";
int ls=0, rs=len-1;
int lc=0, rc=ans-1;
while(lc<=rc){
if(lc==rc){
ch[lc]=s[ls]; break;
}
if(s[ls]==s[rs]){
ch[lc]=ch[rc]=s[ls];
lc++; rc--;
ls++; rs--;
continue;
}
int lx=ls, rx=rs;
ls=L[lx][rx];
rs=R[lx][rx];
}
cout<<ch<<endl;
return 0;
}