牛课 整数序列 (数学)

12 篇文章 0 订阅
6 篇文章 0 订阅

传送门

膜拜牛课上的大佬orz。看了他们的代码之后,发现好巧妙。

\sum sin,我们可以用复数来计算,(cos)+(sin)i,这样的形式,然后用线段树更新查询,对于求和,我们直接对复数相加,然后输出复数的虚部。对于更新,是对复数相乘。 复数相乘是(a+bi)*(c+di)=(ac-bd)+(ad+bc)i, 正好是cos和sin的和角公式。

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef unsigned int ui;
const ll INF=0x3f3f3f3f3f3f3f3f;
const int N=2e5+10;
typedef complex<double> dcom;
dcom tree[N<<2], lazy[N<<2];
int n, m;
int a[N];

void push_up(int rt){
    tree[rt]=tree[rt<<1]+tree[rt<<1|1];
}

void build(int rt, int l, int r){
    lazy[rt]=(dcom){1,0};
    if(l==r){
        tree[rt]=dcom(cos(a[l]), sin(a[l]));
        return;
    }
    int mid=(l+r)>>1;
    build(rt<<1, l, mid);
    build(rt<<1|1, mid+1, r);
    push_up(rt);
}

inline void push_down(int rt){
    tree[rt<<1]*=lazy[rt];
    tree[rt<<1|1]*=lazy[rt];
    lazy[rt<<1]*=lazy[rt];
    lazy[rt<<1|1]*=lazy[rt];
    lazy[rt]=(dcom){1,0};
}

void upd(int rt, int l, int r, int L, int R, dcom val){
    if(L<=l && r<=R){
        tree[rt]*=val;
        lazy[rt]*=val;
        return;
    }
    if(lazy[rt]!=(dcom){1,0})
        push_down(rt);
    int mid=(l+r)>>1;
    if(L<=mid)
        upd(rt<<1, l, mid, L, R, val);
    if(mid<R)
        upd(rt<<1|1, mid+1, r, L, R, val);
    push_up(rt);
}

dcom query(int rt, int l, int r, int L, int R){
    if(L<=l && r<=R){
        return tree[rt];
    }
    if(lazy[rt]!=(dcom){1,0})
        push_down(rt);
    int mid=(l+r)>>1;
    dcom ret=(dcom){1,0};
    if(L<=mid)
        ret+=query(rt<<1, l, mid, L, R);
    if(mid<R)
        ret+=query(rt<<1|1, mid+1, r, L, R);
    return ret;
}

int main(){
    scanf("%d", &n);
    for(int i=1; i<=n; i++)
        scanf("%d", a+i);
    build(1, 1, n);

    scanf("%d", &m);
    while(m--){
        int o, l, r, v;
        scanf("%d%d%d", &o, &l, &r);
        if(o==1){
            scanf("%d", &v);
            upd(1, 1, n, l, r, dcom(cos(v), sin(v)));
        }
        else{
            dcom tmp=query(1, 1, n, l, r);
            printf("%.1lf\n", tmp.imag());
        }

    }

    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值