膜拜牛课上的大佬orz。看了他们的代码之后,发现好巧妙。
求,我们可以用复数来计算,(cos)+(sin)i,这样的形式,然后用线段树更新查询,对于求和,我们直接对复数相加,然后输出复数的虚部。对于更新,是对复数相乘。 复数相乘是(a+bi)*(c+di)=(ac-bd)+(ad+bc)i, 正好是cos和sin的和角公式。
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef unsigned int ui;
const ll INF=0x3f3f3f3f3f3f3f3f;
const int N=2e5+10;
typedef complex<double> dcom;
dcom tree[N<<2], lazy[N<<2];
int n, m;
int a[N];
void push_up(int rt){
tree[rt]=tree[rt<<1]+tree[rt<<1|1];
}
void build(int rt, int l, int r){
lazy[rt]=(dcom){1,0};
if(l==r){
tree[rt]=dcom(cos(a[l]), sin(a[l]));
return;
}
int mid=(l+r)>>1;
build(rt<<1, l, mid);
build(rt<<1|1, mid+1, r);
push_up(rt);
}
inline void push_down(int rt){
tree[rt<<1]*=lazy[rt];
tree[rt<<1|1]*=lazy[rt];
lazy[rt<<1]*=lazy[rt];
lazy[rt<<1|1]*=lazy[rt];
lazy[rt]=(dcom){1,0};
}
void upd(int rt, int l, int r, int L, int R, dcom val){
if(L<=l && r<=R){
tree[rt]*=val;
lazy[rt]*=val;
return;
}
if(lazy[rt]!=(dcom){1,0})
push_down(rt);
int mid=(l+r)>>1;
if(L<=mid)
upd(rt<<1, l, mid, L, R, val);
if(mid<R)
upd(rt<<1|1, mid+1, r, L, R, val);
push_up(rt);
}
dcom query(int rt, int l, int r, int L, int R){
if(L<=l && r<=R){
return tree[rt];
}
if(lazy[rt]!=(dcom){1,0})
push_down(rt);
int mid=(l+r)>>1;
dcom ret=(dcom){1,0};
if(L<=mid)
ret+=query(rt<<1, l, mid, L, R);
if(mid<R)
ret+=query(rt<<1|1, mid+1, r, L, R);
return ret;
}
int main(){
scanf("%d", &n);
for(int i=1; i<=n; i++)
scanf("%d", a+i);
build(1, 1, n);
scanf("%d", &m);
while(m--){
int o, l, r, v;
scanf("%d%d%d", &o, &l, &r);
if(o==1){
scanf("%d", &v);
upd(1, 1, n, l, r, dcom(cos(v), sin(v)));
}
else{
dcom tmp=query(1, 1, n, l, r);
printf("%.1lf\n", tmp.imag());
}
}
return 0;
}