机器学习基础 - [第四章:正则化](3)线性回归的正则化

本文介绍了正则化的线性回归,详细讲解了在线性回归代价函数中加入正则项后的变化。讨论了梯度下降法和正规方程法在正则化线性回归中的应用,展示了参数更新公式,并指出正则化可以防止矩阵XTX在求解过程中的不可逆问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、正则化的线性回归

线性回归模型的代价函数 J ( θ ) J(\theta) J(θ)一般采用均方误差,即:
1 2 m [ ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) 2 ] \frac{1}{2m}[\sum_{i=1}^{m}(h_{\theta}(x^{(i)})-y^{(i)})^{2}] 2m1[i=1m(hθ(x(i))y(i))2]
而正则化的线性回归就是在线性回归的代价函数中加入正则项,所以其代价函数 J ( θ ) J(\theta) J(θ)变为:
1 2 m [ ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) 2 + ∑ j = 1 n θ j 2 ] \frac{1}{2m}[\sum_{i=1}^{m}(h_{\theta}(x^{(i)})-y^{(i)})^{2} +\sum_{j=1}^{n}\theta_{j}^{2}] 2m1[i=1m(hθ(x(i))y(i))2+j=1nθj2]
当代价函数发生改变时,其最优参数的求解会发生什么样的改变呢?我们知道线性规划模型求解最优参数有两种方法,一种是梯度下降,另一种是正规方程法,接下来我们看看这两种方法的改变。
在这里插入图片描述

2、梯度下降法求解正则化的线性回归

未正则化的线性回归模型的梯度下降法的参数更新的公式:
θ 0 : = θ 0 − α 1 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) ) x 0 ( i ) \theta_{0}:=\theta_{0}-\alpha\frac{1}{m}\sum_{i=1}^{m}(h_{\theta}(x^{(i)})-y^{(i)}))x_{0}^{(i)} θ0:=θ0αm1i=1m(hθ(x(i))y(i)))x0(i) θ j : = θ j − α 1 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) ) x j ( i ) \theta_{j}:=\theta_{j}-\alpha\frac{1}{m}\sum_{i=1}^{m}(h_{\theta}(x^{(i)})-y^{(i)}))x_{j}^{(i)} θj:=θjαm1i=1m(hθ(x(i))y(i)))xj(i)
正则化的线性回归模型的梯度下降法的参数更新公式:
θ 0 : = θ 0 − α 1 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) ) ) x 0 ( i ) \theta_{0}:=\theta_{0}-\alpha\frac{1}{m}\sum_{i=1}^{m}(h_{\theta}(x^{(i)})-y^{(i)})))x_{0}^{(i)} θ0:=θ0αm1i=1m(hθ(x(i))y(i))))x0(i) θ j : = θ j − α 1 m [ ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) ) x j ( i ) + λ θ j ] ⇒ θ j : = ( 1 − α λ m ) θ j − α 1 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) ) x j ( i ) \theta_{j}:=\theta_{j}-\alpha\frac{1}{m}[\sum_{i=1}^{m}(h_{\theta}(x^{(i)})-y^{(i)}))x_{j}^{(i)}+\lambda\theta_{j}]\\ \Rightarrow\theta_{j}:=(1-\alpha\frac{\lambda}{m})\theta_{j}-\alpha\frac{1}{m}\sum_{i=1}^{m}(h_{\theta}(x^{(i)})-y^{(i)}))x_{j}^{(i)} θj:=θjαm1[i=1m(hθ(x(i))y(i)))xj(i)+λθj]θj:=(1αmλ)θjαm1i=1m(hθ(x(i))y(i)))xj(i)
从上面可以看出, θ 0 \theta_{0} θ0的更新式子不变,而 θ j \theta_{j} θj是在原有更新公式的基础上,先将更新前的 θ j \theta_{j} θj缩小 ( 1 − α λ m ) (1-\alpha\frac{\lambda}{m}) (1αmλ)倍,然后再进行更新。
在这里插入图片描述

3、正规方程法求解正则化的线性回归

未正则化的线性回归模型的使用正规方程求解参数的结果:
θ = ( X T X ) − 1 X T y \theta=(X^{T}X)^{-1}X^{T}y θ=(XTX)1XTy
正则化的线性回归模型的使用正规方程求解参数的结果:
θ = ( X T X + λ [ 0 ⋯ 0 ⋮ 1 ⋮ 0 ⋯ 1 ] ) − 1 X T y \theta=(X^{T}X+\lambda\left[\begin{matrix}0 &\cdots &0\\ \vdots &1&\vdots\\0&\cdots&1\end{matrix}\right])^{-1}X^{T}y θ=(XTX+λ00101)1XTy
在这里插入图片描述
我们知道,在使用正规方程法求解的时候,可能会遇到 X T X X^{T}X XTX不可逆的情况,但是如果是求解正则化的,就可以避免不可逆的情况:
在这里插入图片描述

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Albert_YuHan

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值