1、正则化的线性回归
线性回归模型的代价函数 J ( θ ) J(\theta) J(θ)一般采用均方误差,即:
1 2 m [ ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) 2 ] \frac{1}{2m}[\sum_{i=1}^{m}(h_{\theta}(x^{(i)})-y^{(i)})^{2}] 2m1[i=1∑m(hθ(x(i))−y(i))2]
而正则化的线性回归就是在线性回归的代价函数中加入正则项,所以其代价函数 J ( θ ) J(\theta) J(θ)变为:
1 2 m [ ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) 2 + ∑ j = 1 n θ j 2 ] \frac{1}{2m}[\sum_{i=1}^{m}(h_{\theta}(x^{(i)})-y^{(i)})^{2} +\sum_{j=1}^{n}\theta_{j}^{2}] 2m1[i=1∑m(hθ(x(i))−y(i))2+j=1∑nθj2]
当代价函数发生改变时,其最优参数的求解会发生什么样的改变呢?我们知道线性规划模型求解最优参数有两种方法,一种是梯度下降,另一种是正规方程法,接下来我们看看这两种方法的改变。
2、梯度下降法求解正则化的线性回归
未正则化的线性回归模型的梯度下降法的参数更新的公式:
θ 0