DeepSeek - R1:模型架构深度解析
引言
本文将深入探索DeepSeek - R1模型架构。将从输入到输出追踪DeepSeek - R1模型,找出架构中的新发展和关键部分。DeepSeek - R1基于DeepSeek - V3 - Base模型架构,本文旨在涵盖其设计的所有重要方面。
目录
- 输入上下文长度
- 总层数
- DeepSeek - R1的前3层
- DeepSeek - R1的第4到61层
- 多头潜在注意力(MLA)
- 混合专家(MoE)
- 多令牌预测(MTP)
一、输入上下文长度
DeepSeek - R1的输入上下文长度为128K。
它从其基础模型DeepSeek - V3 - Base继承了128K的上下文长度。最初,DeepSeek - V3以4K的上下文长度进行预训练,然后通过两阶段的上下文长度扩展,利用YaRN技术先将其增加到32K,再增加到128K。<