DeepSeek - R1:模型架构深度解析

DeepSeek - R1:模型架构深度解析

引言

本文将深入探索DeepSeek - R1模型架构。将从输入到输出追踪DeepSeek - R1模型,找出架构中的新发展和关键部分。DeepSeek - R1基于DeepSeek - V3 - Base模型架构,本文旨在涵盖其设计的所有重要方面。

目录

  1. 输入上下文长度
  2. 总层数
  3. DeepSeek - R1的前3层
  4. DeepSeek - R1的第4到61层
  5. 多头潜在注意力(MLA)
  6. 混合专家(MoE)
  7. 多令牌预测(MTP)

一、输入上下文长度

DeepSeek - R1的输入上下文长度为128K。

它从其基础模型DeepSeek - V3 - Base继承了128K的上下文长度。最初,DeepSeek - V3以4K的上下文长度进行预训练,然后通过两阶段的上下文长度扩展,利用YaRN技术先将其增加到32K,再增加到128K。<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

段智华

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值