解密企业级大模型智能体Agentic AI 关键技术:MCP、A2A、Reasoning LLMs- Manus解密

解密企业级大模型智能体Agentic AI 关键技术:MCP、A2A、Reasoning LLMs- Manus解密

在这里插入图片描述

那你当前这个步骤执行完成之后,这边说了一个非常重要的点?每次迭代只选择一个工具,这个可能对大家感觉有点反直觉,可能大家立即选择分布式等等之后,它确实是分布式的。但是从他整个loop的这个角度讲,像那个python或者type script等等之类的。大家像那个message system,我觉得从系统的角度讲,大家应该是很容易理解的。只不过是这种容易理解可能和你立即想到的像Manus等之类的这些大模型智能体,现在大家一般都分布式的,会有一些直觉上的这种冲突。但实际上你这里谈的是loop,而你的agent可以有很多,他们是分布式协同的,所以这个其实是不冲突的。

然后提交结果向用户发送交付物或者附件。如果这个有附件的时候,因为你是远程的这个OS桌面,那显然你是可以把远程的这个文件等之类的分享给用户。用户点击你的点击这个附件的下载或者是URL肯定是可以下载内容或者访问内容的。

然后这本身这个 loop本身它是信息收集与分析,数据处理可视化,编写文件报告等等。他可以做很多很多不同的具体的业务。因为它本身官方声称它是general agent通用的.如果我们从整个大模型智能体workflow,以manus为例,我们可以再更加具体的去看一下,就用户可能是输入信息或者上传文本。我们刚才看见演示,大家应该会看的很清楚,然后我们这边有coordination layer,这边会有memory knowledge a task decomposition就分解任务,然后有agent orchestrate,你显得会有很多agent 。那我们在这里面谈到的这边agent,就是说操作网络的agents,Manus使用的是Brower ther use ,然后你这边可能数据相关的或者代码相关的,以及文件操作相关的,然后你会执行这边是execution and combination,是因为如果你是一种分布式的这种环境 。Agent interact change data as needed, 也是分布式的一个系统的,这个很正常。

在这里插入图片描述
然后就是这个输出你可以是制作一个网站,或者制作一个表格,或者发送一个notification就通知或者发送邮件。这在远程桌面完成远程完成了一件事情,发送信息给你的手机,这件事情是一件很容易的事情。因为他有你的这个设备的ID,或者说通过一些协议,这些都是一些很经典传统的一些技术。所以这个是我们如果从运行时的角度看见的,以Manus为核心的大模型智能体。我们以它为例,主要是想跟大家引出大模型智能体核心技术的不同维度。例如首先你肯定会有这个上下文和tools,其实我们可以我们再次来看一下这策略。

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

段智华

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值