AI部署到扫地机嵌入式系统中(主控芯片:RK3399)的技术方案和代码实现,使用成熟的AI C++框架

将AI部署到扫地机器人嵌入式系统中,特别是使用RK3399主控芯片,并采用成熟的AI C++框架,可以显著提升机器人的智能化水平和性能。以下是详细的技术方案和代码实现:

方案概述

  1. 选择硬件平台

    • 使用瑞芯微的RK3399芯片,该芯片支持AI和VSLAM技术,适合高性能计算需求。
  2. 安装操作系统和必要软件

    • 安装Ubuntu或其他适用于RK3399的Linux发行版。
    • 安装OpenCV、ONNX Runtime等AI框架。
  3. 模型转换和优化

    • 将YOLOv8模型转换为ONNX格式,并使用TensorRT进行优化,以提高推理速度和效率。
  4. 开发视觉识别算法

    • 使用OpenCV进行图像处理和YOLOv8进行物体检测。
    • 将检测结果用于控制扫地机器人的运动。
  5. 集成和测试

    • 将视觉识别算法集成到扫地机器人的控制系统中。
    • 进行测试和调试,确保系统稳定运行。

实施代码示例

以下是一个使用OpenCV和ONNX Runtime进行物体检测的C++代码示例:

#include <opencv2/opencv.hpp>
#include <onnxruntime/core/session/onnxruntime_cxx_api.h>

int main() {
    // 初始化ONNX Runtime
    Ort::Env env(ORT_LOGGING_LEVEL_WARNING, "test");
    Ort::SessionOptions session_options;
    session_options.SetIntraOpNumThreads(1);
    Ort::Session session(env, "yolov8.onnx", session_options);

    // 获取模型输入输出信息
    Ort::AllocatorWithDefaultOptions allocator;
    auto input_name = session.GetInputName(0, allocator);
    auto output_name = session.GetOutputName(0, allocator);

    // 初始化摄像头
    cv::VideoCapture cap(0);
    if (!cap.isOpened()) {
        std::cerr << "Error: Could not open camera." << std::endl;
        return -1;
    }

    while (true) {
        cv::Mat frame;
        cap >> frame;
        if (frame.empty()) break;

        // 预处理图像
        cv::Mat input_blob;
        cv::resize(frame, input_blob, cv::Size(640, 640));
        input_blob.convertTo(input_blob, CV_32F);
        input_blob = input_blob / 255.0;

        // 创建输入tensor
        std::vector<int64_t> input_shape = {1, 3, 640, 640};
        std::vector<float> input_tensor_values(input_blob.begin<float>(), input_blob.end<float>());
        auto memory_info = Ort::MemoryInfo::CreateCpu(OrtArenaAllocator, OrtMemTypeDefault);
        Ort::Value input_tensor = Ort::Value::CreateTensor<float>(memory_info, input_tensor_values.data(), input_tensor_values.size(), input_shape.data(), input_shape.size());

        // 运行推理
        auto output_tensors = session.Run(Ort::RunOptions{nullptr}, &input_name, &input_tensor, 1, &output_name, 1);

        // 处理检测结果
        auto* raw_output = output_tensors.front().GetTensorMutableData<float>();
        for (size_t i = 0; i < output_tensors.front().GetTensorTypeAndShapeInfo().GetElementCount(); i += 6) {
            float score = raw_output[i + 4];
            if (score > 0.5) {
                int xmin = static_cast<int>(raw_output[i] * frame.cols);
                int ymin = static_cast<int>(raw_output[i + 1] * frame.rows);
                int xmax = static_cast<int>(raw_output[i + 2] * frame.cols);
                int ymax = static_cast<int>(raw_output[i + 3] * frame.rows);
                cv::rectangle(frame, cv::Point(xmin, ymin), cv::Point(xmax, ymax), cv::Scalar(0, 255, 0), 2);
            }
        }

        // 显示图像
        cv::imshow("Object Detection", frame);
        if (cv::waitKey(1) == 'q') break;
    }

    cap.release();
    cv::destroyAllWindows();
    return 0;
}

进一步步骤

  1. 模型训练:如果需要更高的精度,可以使用自己的数据集进行YOLOv8模型训练。
  2. 硬件加速:利用RK3399的GPU和TensorRT进行加速,提升推理速度。
  3. 集成控制:将物体检测结果与扫地机器人的运动控制系统集成,实现自动避障和路径规划。

你可以根据具体需求对上述方案和代码进行调整。如果有任何问题或需要进一步的帮助,请随时告诉我!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值