其实矩阵快速幂和普通快速幂没有什么区别,就是把单个数据改成矩阵,我们只需要能够写出矩阵乘法即可,然后按照快速幂的老套路就行了;
#include<iostream>
#include<algorithm>
using namespace std;
#define MAXN 120
const int mod=1e9+7;
typedef long long ll;
int n;
struct mat
{
ll m[MAXN][MAXN];//矩阵结构体
}unit;//unit为单位矩阵,即主对角线全部为1,这样任何矩阵与单位矩阵相乘都为它本身
mat msub(mat a,mat b)//矩阵相乘函数
{
mat ret;
ll x;
for(int i=0;i<n;i++)
{
for(int j=0;j<n;j++)
{
x=0;
for(int k=0;k<n;k++)
{
x+=((a.m[i][k]*b.m[k][j])%mod);//取余
}
ret.m[i][j]=x%mod;//取余
}
}
return ret;
}
void init_unit()//初始化单位矩阵
{
for(int i=0;i<MAXN;i++)
{
unit.m[i][i]=1;
}
}
mat qpow(mat a,ll x)//快速幂
{
mat ans=unit;
while(x)
{
if(x&1) ans=msub(ans,a);
a=msub(a,a);
x>>=1;
}
return ans;
}
int main()
{
ll x;
init_unit();
cin>>n>>x;
mat a,ans;
for(int i=0;i<n;i++)
{
for(int j=0;j<n;j++)
{
cin>>a.m[i][j];
}
}
ans=qpow(a,x);
for(int i=0;i<n;i++)
{
for(int j=0;j<n;j++)
{
if(j!=n-1) cout<<ans.m[i][j]<<" ";
else cout<<ans.m[i][j]<<endl;
}
}
return 0;
}