N皇后问题说明DFS的回溯和剪枝

本文探讨了LeetCode中的51题——N皇后问题,旨在解决如何在n×n棋盘上放置n个皇后,确保它们互不攻击。通过回溯算法框架进行求解,详细阐述了回溯过程中的路径、选择列表以及结束条件,提供了一种解决此类问题的方法。
摘要由CSDN通过智能技术生成

leetcode 51 n 皇后问题

研究的是如何将 n 个皇后放置在 n×n 的棋盘上,并且使皇后彼此之间不能相互攻击。给你一个整数 n ,返回所有不同的 n 皇后问题 的解决方案。每一种解法包含一个不同的 n 皇后问题 的棋子放置方案,该方案中 ‘Q’ 和 ‘.’ 分别代表了皇后和空位。

回溯算法框架

res = []
def backtrack(路径,选择列表):
    做剪枝
    if 满足结束条件:
        res.append(路径)
        return
    for 选择 in 选择列表:
        做选择
        backtrack(路径,选择列表)
        撤销选择

解决一个回溯问题,实际上就是一个决策树的遍历过程:
1、路径:也就是已经做出的选择。
2、选择列表:也就是你当前可以做的选择。
3、结束条件:也就是到达决策树底层,无法再做选择的条件。

class Solution {
public:
    vector<string> queenlist;
    bool isAvailable(vector<int> poslist, int pos, int h){
        int x=h;
        int y=pos;
        for(int i=0;i<h;i++){
            int x1=i;
            int y1=poslist[i];
            if(y == y1||(x-x1)==(y-y1)||(x-x1)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值