资源限制
时间限制:1.0s 内存限制:512.0MB
问题描述
Huffman树在编码中有着广泛的应用。在这里,我们只关心Huffman树的构造过程。
给出一列数{pi}={p0, p1, …, pn-1},用这列数构造Huffman树的过程如下:
1. 找到{pi}中最小的两个数,设为pa和pb,将pa和pb从{pi}中删除掉,然后将它们的和加入到{pi}中。这个过程的费用记为pa + pb。
2. 重复步骤1,直到{pi}中只剩下一个数。
在上面的操作过程中,把所有的费用相加,就得到了构造Huffman树的总费用。
本题任务:对于给定的一个数列,现在请你求出用该数列构造Huffman树的总费用。
例如,对于数列{pi}={5, 3, 8, 2, 9},Huffman树的构造过程如下:
1. 找到{5, 3, 8, 2, 9}中最小的两个数,分别是2和3,从{pi}中删除它们并将和5加入,得到{5, 8, 9, 5},费用为5。
2. 找到{5, 8, 9, 5}中最小的两个数,分别是5和5,从{pi}中删除它们并将和10加入,得到{8, 9, 10},费用为10。
3. 找到{8, 9, 10}中最小的两个数,分别是8和9,从{pi}中删除它们并将和17加入,得到{10, 17},费用为17。
4. 找到{10, 17}中最小的两个数,分别是10和17,从{pi}中删除它们并将和27加入,得到{27},费用为27。
5. 现在,数列中只剩下一个数27,构造过程结束,总费用为5+10+17+27=59。
输入格式
输入的第一行包含一个正整数n(n<=100)。
接下来是n个正整数,表示p0, p1, …, pn-1,每个数不超过1000。
输出格式
输出用这些数构造Huffman树的总费用。
样例输入
5
5 3 8 2 9
样例输出
59
每两个最小值——可想到从小到大排序,为了节省空间,可以利用最小值更新和删除的时候,所以动态修改最小的两个数,并且为了减枝可以移动d的位置,sum+=费用 |
import java.util.Scanner;
public class Huffman树 {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int data[] = new int[n];
int s = 0;
int d = 0;
for(int k=0;k<n;k++){
data[k]=sc.nextInt();
}
while (d < n - 1) {
for (int i = d; i < n; i++) {
int temp;
for (int j = i; j < n; j++) {
if (data[i] > data[j]) {
temp = data[i];
data[i] = data[j];
data[j] = temp;
}
}
}
s += data[d] + data[d + 1];
data[d + 1] += data[d];
data[d] = 0;
d++;
}
System.out.println(s);
}
}