- 环形链表 II
- slow指针移动速度为1
- fast指针移动速度为2
- 同时开始移动
- 实心点为相遇点,当slow慢指针与fast指针相遇时,起点到相遇点的距离为r,即slow走了r的距离,相同时间按照fast速度可见它走了2r的距离。
- 故起始点到相遇点为r距离;相遇点到相遇点距离为2r-r。问题是寻找链表开始入环的第一个节点,第一个入环点到相遇点为公共边,那么此时一个指针从起始出发一个指针从相遇点出发,以相同速度,必然会在第一个入环点相遇。(因为距离和速度相同)
public class Solution {
public ListNode detectCycle(ListNode head) {
if (head == null) {
return null;
}
ListNode slow = head, fast = head;
while (fast != null) {
slow = slow.next;
if (fast.next != null) {
fast = fast.next.next;
} else {
return null;
}
if (fast == slow) {
ListNode ptr = head;
while (ptr != slow) {
ptr = ptr.next;
slow = slow.next;
}
return ptr;
}
}
return null;
}
}
官方代码——>
作者:LeetCode-Solution
链接:https://leetcode-cn.com/problems/linked-list-cycle-ii/solution/huan-xing-lian-biao-ii-by-leetcode-solution/
来源:力扣(LeetCode)