力扣 1219. 黄金矿工

131 篇文章 0 订阅
20 篇文章 0 订阅
这篇博客讨论了一种使用深度优先搜索(DFS)算法解决寻找金矿最大黄金路径的问题。题目要求从含有黄金的单元格出发,按照上下左右的规则收集黄金,且每个单元格只能访问一次。博主提供了C++实现的代码示例,通过遍历所有含金单元格并进行DFS搜索,找到最大黄金总和。该问题展示了如何在有限的空间和规则下优化路径选择以达到最佳收益。
摘要由CSDN通过智能技术生成

题目

你要开发一座金矿,地质勘测学家已经探明了这座金矿中的资源分布,并用大小为 m * n 的网格 grid 进行了标注。每个单元格中的整数就表示这一单元格中的黄金数量;如果该单元格是空的,那么就是 0。

为了使收益最大化,矿工需要按以下规则来开采黄金:

  • 每当矿工进入一个单元,就会收集该单元格中的所有黄金。
  • 矿工每次可以从当前位置向上下左右四个方向走。
  • 每个单元格只能被开采(进入)一次。
  • 不得开采(进入)黄金数目为 0 的单元格。
  • 矿工可以从网格中 任意一个 有黄金的单元格出发或者是停止。

示例 1:

输入:grid = [[0,6,0],[5,8,7],[0,9,0]]
输出:24
解释:
[[0,6,0],
[5,8,7],
[0,9,0]]
一种收集最多黄金的路线是:9 -> 8 -> 7。
示例 2:

输入:grid = [[1,0,7],[2,0,6],[3,4,5],[0,3,0],[9,0,20]]
输出:28
解释:
[[1,0,7],
[2,0,6],
[3,4,5],
[0,3,0],
[9,0,20]]
一种收集最多黄金的路线是:1 -> 2 -> 3 -> 4 -> 5 -> 6 -> 7。

提示:

1 <= grid.length, grid[i].length <= 15
0 <= grid[i][j] <= 100
最多 25 个单元格中有黄金。

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/path-with-maximum-gold
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

解释和代码

第一眼感觉就是dfs

注意题意,可以从网格中 任意一个 有黄金的单元格出发或者是停止

没什么难度,就是直接模拟即可,注意边界

网上代码都差不多的样子

class Solution {
public:
    int maxv = 0, tsum = 0;
    int dx[4] = {0, 0, 1, -1};
    int dy[4] = {1, -1, 0, 0};
    
    void dfs(int tx, int ty, vector<vector<int>>& grid) {
        if (tx < 0 || ty < 0 || tx >= grid.size() || ty >= grid[0].size() || grid[tx][ty] == 0) return ;
        int temp = grid[tx][ty];
        tsum += temp;
        maxv = max(maxv, tsum);
        grid[tx][ty] = 0;
        for (int i=0; i<4; i++) {
            int px = tx + dx[i];
            int py = ty + dy[i];
            dfs(px, py, grid);
        }
        grid[tx][ty] = temp;
        tsum -= temp;
    }
    
    int getMaximumGold(vector<vector<int>>& grid) {
        for (int i=0; i<grid.size(); i++) 
            for (int j=0; j<grid[i].size(); j++) 
                if (grid[i][j] != 0)
                    dfs(i, j, grid);
        return maxv;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值