基于最大互信息系数MIC算法先对高维度的数据进行降维,将原始数据的特征维度进行筛选降低后再结合长短神经网络模型

基于最大互信息系数MIC算法先对高维度的数据进行降维,将原始数据的特征维度进行筛选降低后再结合长短神经网络模型LSTM建立多输入单输出的拟合预测MIC-LSTM组合模型。
程序内注释详细,直接替换数据就可以用。
程序语言为matlab。

随着数据集规模的增大和特征维度的增多,我们需要在处理数据时克服许多挑战。传统的数据降维方法,如主成分分析(PCA)、线性判别分析(LDA)等,无法完全满足这些挑战。对于高维数据的处理,一个有效的方法是利用信息理论概念构建数学模型进行特征选择和降维。在这篇文章中,我们将介绍一种基于最大互信息系数MIC算法的数据降维方法&

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值