题目描述
在一个圆形操场的四周摆放 NN 堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分。
试设计出一个算法,计算出将 NN 堆石子合并成 11 堆的最小得分和最大得分。
输入格式
数据的第 11 行是正整数 NN,表示有N堆石子。
第 22 行有 NN 个整数,第 ii 个整数 a_ia
i
表示第 ii 堆石子的个数。
输出格式
输出共 22 行,第 11 行为最小得分,第 22 行为最大得分。
输入输出样例
输入 #1复制
4
4 5 9 4
输出 #1复制
43
54
#include<iostream>
#include<cstring>
using namespace std;
int dp[1001][1001];
int pre[1001];
int a[1001];
int dpp[1001][1001];
int ansa,ansi=1e9;
int main()
{
int n;
cin>>n;
for(int i=1;i<=n;i++)
{
cin>>a[i];
pre[i]=pre[i-1]+a[i];
}
for(int i=n+1;i<=2*n;i++)//2*n是因为石子为环;
{
pre[i]=pre[i-1]+a[i-n];
}
for(int len=2;len<=n;len++)//由于长度为一时合并就是自身所以从二开始;
{
for(int i=1;i+len-1<=2*n;i++)
{
int end=len+i-1;
dpp[i][end]=1e9;
for(int j=i;j<end;j++)//由于当j=end时j+1>end无意义故<end;
{
dp[i][end]=max(dp[i][end],dp[i][j]+dp[j+1][end]+pre[end]-pre[i-1]);
dpp[i][end]=min(dpp[i][end],dpp[i][j]+dpp[j+1][end]+pre[end]-pre[i-1]);
}
}
}
for(int i=1;i<=n;i++)
{
ansa=max(ansa,dp[i][i+n-1]);
ansi=min(ansi,dpp[i][i+n-1]);
}
cout<<ansi<<endl;
cout<<ansa;
return 0;
}