区间——石子合并;

题目描述
在一个圆形操场的四周摆放 NN 堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分。

试设计出一个算法,计算出将 NN 堆石子合并成 11 堆的最小得分和最大得分。

输入格式
数据的第 11 行是正整数 NN,表示有N堆石子。

第 22 行有 NN 个整数,第 ii 个整数 a_ia
i

表示第 ii 堆石子的个数。

输出格式
输出共 22 行,第 11 行为最小得分,第 22 行为最大得分。

输入输出样例
输入 #1复制
4
4 5 9 4
输出 #1复制
43
54

#include<iostream>
#include<cstring>
using namespace std;
int dp[1001][1001];
int pre[1001];
int a[1001];
int dpp[1001][1001];
int ansa,ansi=1e9;
int main()
{
	int n;
	cin>>n;
	for(int i=1;i<=n;i++)
	{
		cin>>a[i];
		pre[i]=pre[i-1]+a[i];
	}
	for(int i=n+1;i<=2*n;i++)//2*n是因为石子为环;
	{
		pre[i]=pre[i-1]+a[i-n];
	}
	for(int len=2;len<=n;len++)//由于长度为一时合并就是自身所以从二开始;
	{
		for(int i=1;i+len-1<=2*n;i++)
		{
			int end=len+i-1;
			dpp[i][end]=1e9;
			for(int j=i;j<end;j++)//由于当j=end时j+1>end无意义故<end;
			{
				dp[i][end]=max(dp[i][end],dp[i][j]+dp[j+1][end]+pre[end]-pre[i-1]);
				dpp[i][end]=min(dpp[i][end],dpp[i][j]+dpp[j+1][end]+pre[end]-pre[i-1]);
			}
		}
	}
	for(int i=1;i<=n;i++)
	{
		ansa=max(ansa,dp[i][i+n-1]);
		ansi=min(ansi,dpp[i][i+n-1]);
	}
	cout<<ansi<<endl;
	cout<<ansa;
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值