"多米诺骨牌"问题的动态规划算法

现有n块”多米诺骨牌”s1,s2,s3,...sn水平放成一排,每次骨牌si包含左右两个部分,每个部分赋予一个非负整数值,如下图所示为包含6块骨牌的序列.骨牌可做180度旋转,使得原来在左边的值变到右边,而原来右边的值移到左边,假设不论si如何旋转,L[i]总是存储si左边的值, R[i]总是存储si右边的值, W[i]用于存储si的状态:当L[i]<=R[i]时记为0,否则记为1,试采用动态规划算法设计时间复杂度为o(n)的算法

 求:R[1]*L[2]+R[2]*L[3]+R[3]*L[4]+R[4]*L[5]+...++R[n-1]*L[n]的最大值,以及当取得最大值时每个骨牌的状态.
  5|8    4|2     9|6    7|7   3|9    11|10
  s1       s2     s3      s4    s5        s6

 

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值