房产信息分析-PYTHON爬虫实现

一、需求分析

随着房地产市场的不断发展,房产数据成为了研究市场趋势、消费者需求以及投资决策的重要依据。安居客作为知名的房产信息平台,拥有丰富的楼盘信息资源。将通过爬取安居客上的楼盘信息数据,运用数据处理和分析技术,深入挖掘其中的有价值信息,帮助我们更好地了解房地产市场的现状和潜在规律。

二、详细代码

运行上述资源提供的提供的爬虫代码,从安居客网站获取楼盘信息数据。该代码将从上海的楼盘页面(https://sh.fang.anjuke.com/loupan/all/p{}/,{ } 内为页码)抓取前两页的楼盘数据,包括楼盘名称、地址、地区、面积(全)、面积、价格等信息,并保存为 Excel 文件(d:\ 安居客房源 1133.xlsx)。

三、效果预览

四、详细阐述

数据处理与分析(使用 Pandas 库)

1.数据清洗 读取 Excel 文件中的数据到 Pandas DataFrame。

(1)检查数据中是否存在缺失值、重复值、异常值等问题,并进行相应的处理。例如,对于缺失的价格信息,可以根据周边楼盘价格进行估算或删除该记录;对于重复的楼盘数据,进行去重处理。 (2)对数据中的文本信息进行清洗和规范化,如去除楼盘名称中的特殊字符、统一价格单位等。

2.数据分析

(1)统计不同区域楼盘的数量,计算各区域楼盘数量占总楼盘数量的比例,并进行排序。

(2)根据价格信息,划分不同的价格区间(如 0 - 100 万、100 - 200 万等),统计每个价格区间内楼盘的数量和占比,分析市场价格分布情况。

数据可视化

1.使用 Matplotlib 或 Seaborn 等可视化库,根据数据分析结果绘制以下图表:

(1)绘制柱状图展示不同区域楼盘数量分布情况,横坐标为区域名称,纵坐标为楼盘数量。

(2)绘制饼图展示不同价格区间楼盘的占比情况,每个扇形表示一个价格区间,并标注占比数值。

2.为每个图表添加清晰的标题、坐标轴标签和图例,确保图表能够准确传达数据分析结果。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值