第9章 多路查找树(2-3树、2-3-4树、B树、B+树)
9.1 为什么使用多路查找树
二叉树存在的问题
二叉树需要加载到内存的,如果二叉树的节点少,没有什么问题,但是如果二叉树的节点很多(比如1亿), 就存在如下问题:
-
问题1:在构建二叉树时,需要多次进行I/O操作(海量数据存在数据库或文件中),节点海量,构建二叉树时,
速度有影响
. -
问题2:节点海量,也会造成二叉树的
高度很大
,会降低操作速度.
解决上述问题 —> 多叉树
多路查找树
- 1、在二叉树中,每个节点有数据项,最多有两个子节点。如果允许每个节点可以有
更多的数据项和更多的子节点
,就是多叉树(multiway tree) - 2、后面我们讲解的"2-3树","2-3-4树"就是多叉树,多叉树通过
重新组织节点,减少树的高度
,能对二叉树进行优化。 - 3、举例说明(下面2-3树就是一颗多叉树)
9.2 2-3树
2-3树定义
- 所有叶子节点都要在同一层
- 二节点要么有两个子节点,要么没有节点
- 三节点要么没有节点,要么有三个子节点
- 不能出现节点不满的情况
2-3树插入的操作
插入原理:
对于2-3树的插入来说,与平衡二叉树相同,插入操作一定是发生在叶子节点上,并且节点的插入和删除都有可能导致不平衡的情况发生,在插入和删除节点时也是需要动态维持平衡的,但维持平衡的策略和AVL树是不一样的。
AVL树向下添加节点之后通过旋转来恢复平衡,而2-3树是通过节点向上分裂来维持平衡的,也就是说2-3树插入元素的过程中层级是向上增加的,因此不会导致叶子节点不在同一层级的现象发生,也就不需要旋转了。
三种插入情况: