自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(250)
  • 资源 (30)
  • 收藏
  • 关注

原创 每个行业都在被AI“重做一遍”!你不会提示词工程,就只能被淘汰!

制造业机器人精度超越老师傅,医疗AI诊断速度比专家快10倍,金融AI交易速度是人脑的百万倍...各行各业都在被AI重构。不会使用AI工具的职场人正面临淘汰危机:简历筛选被刷、面试答不上AI问题、升职被会AI的同事碾压。

2025-06-14 18:57:16 206

原创 玩转计算机视觉——按照配置部署paddleOCR(英伟达环境与昇腾300IDUO环境)

本文详细介绍了在英伟达和昇腾300IDUO平台上安装PaddleOCR的完整流程。英伟达平台包括创建Python 3.10虚拟环境、安装Jupyter和PaddleOCR GPU版本。昇腾平台安装则包含驱动固件准备、CANN环境配置、源码下载、模型转换(paddle→onnx→mindir)以及最终测试验证。两种安装方式均提供了完整的命令操作步骤和官方参考链接,涵盖从环境搭建到模型推理的全过程,适合不同硬件平台上的OCR应用部署。

2025-06-13 11:37:10 92

原创 探索大语言模型(LLM):使用EvalScope进行模型评估(API方式)

EvalScope是阿里巴巴魔搭社区开发的开源模型评估框架,提供模型压力测试和性能评估功能。安装过程包括创建conda虚拟环境、安装Jupyter内核和EvalScope组件。压力测试可通过命令行执行,测试指标包括吞吐量、延迟等关键参数。性能评估支持在线数据集和本地数据集两种模式,通过Jupyter Notebook配置评估任务。评估结果可通过可视化看板查看,执行evalscope app命令后访问本地端口即可查看详细报告。该框架为开发者提供了一站式的模型评估解决方案

2025-06-10 09:42:19 723

原创 提示词工程:AI界的“芝麻开门”!学会这招,让AI乖得像你家猫!

“为什么同事用AI写方案被老板夸上天,而你连让AI画个猫都能收获一只‘四不像’?”“别怀疑人生!你只是缺了这把‘魔法钥匙’——提示词工程!”

2025-06-09 13:31:50 931

原创 大模型「瘦身记」:量化技术让AI从“吃显卡”到“吃泡面”!

你知道吗?现在的大模型动不动就万亿参数,吃算力像喝奶茶一样上瘾!别慌!今天带你揭秘大模型量化的“黑科技减肥法”,让AI既聪明又“苗条

2025-06-09 13:30:17 420

原创 【AI模型训练真相】为什么现在企业都在玩“微调“而不是从头训练?

当你调用ChatGPT写文案、用Stable Diffusion生成图片时,可能不知道这些模型早就在价值数亿的超级计算机上"烧"了数月电费。今天带你揭秘AI模型训练的"潜规则"——预训练与微调的财富密码!

2025-06-08 21:04:07 504

原创 大语言模型的三大门派:你的聊天对象究竟是哪一派?

当你在对话框输入问题,是否好奇过屏幕那端的AI究竟在如何"思考"?今天带你揭秘AI世界的三大流派,看懂它们如何用不同方式与你对话!

2025-06-08 21:02:01 692

原创 AI界的“专家会诊”:MoE模型如何让AI变得更聪明?

当你走进医院,护士先问症状再分诊到对应科室——这种“精准匹配”的智慧,现在被AI学会了!今天带你解锁科技圈新宠:MoE(Mixture of Experts)多专家模型,看AI如何组建“专家天团”攻克复杂难题。

2025-06-06 11:54:49 691

原创 当AI模型越来越大:参数量背后的“黄金公式”与Scaling Law的启示

过去十年,人工智能领域最震撼的变革之一,是模型参数量从百万级飙升至万亿级。从GPT-3的1750亿参数到GPT-4的神秘规模,再到谷歌Gemini的“多模态巨兽”,参数量仿佛成了AI能力的代名词。但参数真的是越多越好吗?这场“军备竞赛”背后,是否隐藏着更底层的规律?今天,我们拆解参数量的决定性因素,并透过Scaling Law(尺度定律)的视角,窥探AI发展的终极密码。

2025-06-06 11:52:26 507

原创 每个行业都在被AI“重做一遍”!你不会提示词工程,就只能被淘汰!

AI浪潮席卷职场:提示词工程已成生存技能 从制造业到医疗、金融,AI正在颠覆传统工作模式。数据显示,AI在CT诊断中比专家快10倍,金融交易速度提升百万倍。职场人面临紧迫选择:掌握AI工具或面临淘汰。 本文揭示8大提示词黄金法则: 精准翻译需求 、设定具体人设 、结构化指令、 明确禁忌区、 迭代优化、 爆款模仿 、量化指标 、工具包组合 。不同行业应用案例显示,优质提示词可使AI产出效率提升300%。掌握提示词工程不仅是职场生存之道,更是开启副业收入的新钥匙。

2025-06-02 19:21:00 577

原创 探索大语言模型(LLM):参数量背后的“黄金公式”与Scaling Law的启示

过去十年,人工智能领域最震撼的变革之一,是模型参数量从百万级飙升至万亿级。从GPT-3的1750亿参数到GPT-4的神秘规模,再到谷歌Gemini的“多模态巨兽”,参数量仿佛成了AI能力的代名词。但参数真的是越多越好吗?这场“军备竞赛”背后,是否隐藏着更底层的规律?今天,我们拆解参数量的决定性因素,并透过Scaling Law(尺度定律)的视角,窥探AI发展的终极密码。

2025-06-02 16:08:30 580

原创 探索大语言模型(LLM):RSE流程详解——从文档中精准识别高相关片段

RSE(检索增强摘要生成)流程通过五个关键步骤实现高效信息提取:数据切分将文档分段向量化;相似度筛选保留高相关片段;上下文窗口查找捕捉边界信息;片段总值计算量化整体相关性;阈值筛选确定最终高相关片段。文章结合案例和Python代码示例,展示了该流程在信息检索和摘要生成中的应用优势,并展望了通过优化切分策略、相似度计算和机器学习算法进一步提升其性能的可能性。RSE流程为处理海量文本数据提供了精准高效的技术解决方案。

2025-06-02 16:00:40 874

原创 探索大语言模型(LLM):查漏补缺,你真的完全了解大语言模型的术语吗?

在人工智能领域,大语言模型(LLM)已成为技术革新与应用落地的核心驱动力。从参数规模到训练技术,从基础架构到前沿研究方向,理解这些术语是掌握LLM技术的关键。本文将系统解析大语言模型的核心术语,涵盖模型规模、训练方法、优化技术、部署实践及前沿研究方向,为从业者构建完整的知识结构。

2025-05-12 13:58:19 696

原创 探索大语言模型(LLM):国产大模型DeepSeek vs Qwen,谁才是AI模型的未来?

在AI模型“军备竞赛”愈演愈烈的今天,如何选择最适合业务场景的模型成为关键。本文将从基座模型、推理模型、Instruct模型三个核心维度,深度对比DeepSeek V3、DeepSeek R1、QwQ、Qwen2.5与Qwen3,揭示它们的底层技术差异与适用场景。

2025-05-12 10:07:40 1327

原创 探索大语言模型(LLM):硅基流动+Cherry studio免费白嫖Qwen3模型

Qwen3以混合推理架构与多语言能力重新定义了开源大模型性能边界,而硅基流动平台通过优化AI基础设施,显著降低了大模型的应用门槛与成本,两者共同推动了生成式AI技术的普及与商业化落地。本文将采用硅基流动+Cherry studio的方式免费尝鲜Qwen3模型。

2025-05-08 16:44:10 735

原创 探索大语言模型(LLM):词袋法(Bag of Words)原理与实现

词袋法通过简单的统计实现了文本的数值化,是NLP任务的基石。尽管存在局限性,但其思想仍被广泛应用于早期文本分类系统(如垃圾邮件过滤)。对于需要语义理解的任务,可进一步探索Word2Vec、BERT等深度学习模型。

2025-05-08 15:20:33 1059

原创 探索大语言模型(LLM):Qwen3速测指南(transformers调用)

Qwen3发布后4小时内GitHub获1.7万星标,刷新开源大模型热度纪录。本篇文章将以transformers调用的方式快速进行Qwen3调用。

2025-05-04 15:11:04 975

原创 探索大语言模型(LLM):语言模型从海量文本中无师自通

语言模型的自监督训练,本质是赋予AI“自主学习”的能力——从海量数据中提炼规律,而非依赖人类灌输。正如人类通过阅读书籍学习语言,AI也正在通过“阅读”互联网文本,逐步构建对世界的认知。这一过程不仅重塑了NLP的技术范式,更预示着通用人工智能(AGI)的未来路径:当机器学会自我监督,或许离真正“理解”世界就不远了。如果自监督学习能扩展到视频、蛋白质序列等领域,是否会催生新一代“多模态基础模型”?这一问题的答案,可能正在下一个十年的科研突破中。

2025-04-27 16:42:19 1095

原创 探索大语言模型(LLM):自监督学习——从数据内在规律中解锁AI的“自学”密码

自监督学习的核心价值,在于赋予AI“自主学习”的能力——从海量数据中提炼规律,而非依赖人类灌输。这一过程不仅重塑了AI的技术范式,更预示着通用人工智能(AGI)的未来路径:当机器学会自我监督,或许离真正“理解”世界就不远了。这种“无师自通”的能力,不仅破解了数据标注的昂贵难题,更在语言模型、计算机视觉等领域催生出GPT、BERT、SimCLR等突破性成果。在自然语言处理(NLP)领域,自监督学习通过设计精巧的“伪任务”,让模型从海量无标注文本中自动挖掘监督信号,实现“用数据自问自答”的自我训练。

2025-04-27 16:30:17 917

原创 探索大语言模型(LLM):ReAct、Function Calling与MCP——执行流程、优劣对比及应用场景

ReAct、Function Calling和MCP在人工智能领域都有着重要的应用价值。ReAct凭借其对模型的广泛适应性和可解释性,在众多场景中发挥作用;Function Calling在支持其功能的模型上,高效处理复杂操作;MCP则通过多智能体的协同,为复杂任务提供解决方案。在实际应用中,开发者需根据任务特点、模型能力等因素,合理选择合适的方法,也可尝试将多种方法结合使用,充分发挥它们的优势。随着技术的不断进步,未来这些方法可能会相互融合、创新,为人工智能的发展带来更多可能。

2025-04-21 13:14:43 1267

原创 玩转大语言模型——探秘ReAct:代码背后的推理与行动协作之道

在人工智能领域,让模型能够像人类一样进行推理和行动是一个极具挑战性且意义重大的目标。ReAct(Reason Action),即推理与行动框架,正是朝着这个方向迈出的重要一步。本文将结合一段具体代码,深入剖析ReAct的工作原理及其应用,并探讨其与function calling的区别,以及在无function calling能力模型上的独特应用。在本博客中仅以简单的数值运算以及随机选取动物作为案例,读者可根据需求添加实际的函数。

2025-04-21 12:52:08 183

原创 探索大语言模型(LLM):Transformer 与 BERT从原理到实践

在自然语言处理(NLP)的发展历程中,Transformer 和 BERT 无疑是具有里程碑意义的技术。它们的出现,彻底改变了 NLP 领域的研究和应用格局。本文将深入探讨 Transformer 和 BERT 的背景、核心公式推导,并提供代码实现,帮助大家更好地理解和应用这两项技术。在 Transformer 出现之前,循环神经网络(RNN)及其变体长短时记忆网络(LSTM)、门控循环单元(GRU)等在 NLP 任务中占据主导地位。RNN 能够处理序列数据,通过隐状态传递信息,从而捕捉上下文依赖关系。

2025-04-19 14:04:35 1134 2

原创 探索大语言模型(LLM):循环神经网络的深度解析与实战(RNN、LSTM 与 GRU)

循环神经网络(RNN)为处理序列数据提供了基础框架,但其在长序列处理上的局限性促使了长短期记忆网络(LSTM)和门控循环单元(GRU)的诞生。LSTM 通过精细的门控机制和细胞状态,有效地解决了梯度问题,能够处理复杂的长序列数据。GRU 则在保持一定性能的同时,通过简化结构提高了训练效率。在实际应用中,我们需要根据具体任务的特点和需求,选择合适的模型。希望通过本文的介绍,你对 RNN、LSTM 和 GRU 有了更深入的理解,并能够在自己的项目中灵活运用它们。

2025-04-18 16:30:16 858

原创 探索大语言模型(LLM):马尔可夫链——从诗歌分析到人工智能的数学工具

马尔可夫链由俄国数学家**安德雷·马尔可夫**于1906年提出,最初是为了挑战当时概率论中“独立性假设”的局限性。他希望通过研究**相依变量序列**,证明即使随机变量之间存在依赖关系,大数定律和中心极限定理仍然成立。

2025-04-17 15:46:36 994

原创 探索大语言模型(LLM):目标、原理、挑战与解决方案

在自然语言处理(NLP)领域,语言模型(Language Model,LM)是核心组件之一,其目标是建模自然语言的概率分布,从而预测词序列出现的可能性。本文将详细介绍语言模型的目标、数学表示、面临的挑战以及解决方法,并辅以实际例子。

2025-04-16 17:18:41 915

原创 探索大语言模型(LLM):定义、发展、构建与应用

在自然语言处理(NLP)领域,大规模语言模型(Large Language Models, LLM)正引领着一场技术革命。这些模型以其庞大的参数规模、强大的语言理解能力和广泛的应用场景,成为人工智能研究与应用中的一颗璀璨明星。本文将深入探讨LLM的基本概念、发展历程、构建流程以及其在多个领域的应用。

2025-04-16 15:07:43 868

原创 Linux系统管理(十九)——欧拉系统硬盘挂载、网络配置以及Docker环境安装

欧拉系统硬盘挂载、网络配置以及Docker环境安装

2025-04-06 17:43:30 1456

原创 玩转大语言模型——使用华为官方MindIE-Server镜像方式部署DeepSeek模型

本文将详细介绍在国产Linux系统欧拉中使用华为官方MindIE-Server镜像方式部署DeepSeek模型。一般情况下华为昇腾800I服务器可以推理DeepSeek-R1-70B,4张300I-Duo服务器可以推理DeepSeek-R1-32B。在配置中尽量贴合官方文档,包含用到的一些其他的技术细节,便于零基础入门使用。

2025-04-04 18:31:07 527

原创 玩转大语言模型——昇腾NPU驱动固件以及CANN的安装(教你如何使用官方社区安装)

随着国产化显卡的能力的提升,不可避免的会遇到用到国产化服务器运行大语言模型的场景,本文将针对昇腾NPU,对于如何使用昇腾官方社区安装NPU驱动固件以及CANN进行整理归纳,通过针对NPU驱动固件和CANN的安装,抛砖引玉,帮助读者更好的理解昇腾官方社区的使用方式。

2025-04-04 16:02:24 155

原创 探索大语言模型(LLM):零基础上手硅基流动平台(附带2000万token邀请码)

SiliconFlow(硅基流动)是专注于生成式AI的计算基础设施平台,提供大模型推理引擎(SiliconLLM)、文生图/视频加速库(OneDiff)及模型云服务平台(SiliconCloud),旨在降低AI模型的部署和推理成本。

2025-04-03 15:08:40 6537

原创 torch_npu使用中遇到的问题以及解决方案

在配置环境和使用torch_npu时遇到的问题以及解决方法

2025-03-26 10:49:25 739

原创 Linux系统管理(十八)——Ubuntu Server环境下载安装图形化界面、英伟达显卡驱动、Cuda、cudnn、conda的深度学习环境

Ubuntu Server环境下载安装图形化界面、英伟达显卡驱动、Cuda、cudnn、conda的深度学习环境

2025-03-04 10:18:51 628

原创 玩转大语言模型——Ubuntu系统环境下使用llama.cpp进行CPU与GPU混合推理deepseek

llama.cpp是一个基于C/C++的开源项目,旨在高效地运行大型语言模型推理。纯采用纯C/C++编写,不依赖其他外部库,可移植性强,只要环境支持C/C++运行,就能运行llama.cpp。支持Apple芯片,通过ARM NEON等框架进行优化;支持x86架构的AVX等指令集;提供自定义CUDA内核,支持NVIDIA、AMD等GPU,还支持Vulkan和SYCL后端,可实现CPU+GPU混合推理。除此之外还支持1.5位到8位的整数量化,加快推理速度并减少内存使用,便于在资源有限的设备上运行。

2025-03-04 09:30:05 690

原创 Linux系统管理(十七)——配置英伟达驱动、Cuda、cudnn、Conda、Pytorch、Pycharm等Python深度学习环境

深度学习和大语言模型的部署不免会用到Linux系统,在本章中将详细介绍配置英伟达驱动、Cuda、cudnn、Conda、Pytorch、Pycharm等Python深度学习环境,为支持深度学习和大语言模型运行提供支持。

2025-02-24 16:06:45 1186 4

原创 Linux系统管理(十六)——通过WSL配置windows下的Linux系统(可视化界面与远程连接)

WSL,即Windows Subsystem for Linux,是微软在Windows 10和Windows 11中引入的功能,允许用户在Windows上原生运行Linux的命令行工具和应用程序,无需启动完整的Linux虚拟机或进行双系统启动。

2025-02-17 14:02:25 692

原创 玩转大语言模型——使用LM Studio在本地部署deepseek R1的零基础)教程

在前期的几个文章中我们已经介绍了很多带UI的本地化部署方式了,而今天我们要介绍的LM Studio,不仅可以实现本机的使用,还可以为其他软件或处于同一局域网下的其他计算机提供接口的调用,和其他本地部署软件配合起来使用更佳。本章将介绍在Windows环境下和Linux环境下下载并部署LM-Studio。

2025-02-17 10:08:41 1120

原创 玩转大语言模型——使用Kiln AI可视化环境进行大语言模型微调数据合成

Kiln AI是一个强大的工具,主要用于微调大型语言模型(LLM)、生成合成数据以及协作数据集。Kiln AI提供了一整套无需编程、可视化操作的解决方案,帮助用户从零开始构建微调后的模型。用户可以通过Kiln UI创建任务,明确需求、初始提示和输入输出结构,然后选择合适的模型并配置参数,即可发起微调任务。Kiln支持多种主流模型,如OpenAI的GPT-4o系列、Meta的Llama 3.1与Llama 3.2以及Mistral的Mixtral等。

2025-02-11 17:49:36 3044 3

原创 玩转大语言模型——三分钟教你用langchain+提示词工程获得猫娘女友

提示词工程是通过设计和优化输入提示来引导语言模型生成符合期望的输出的一项技术。一般用于设定模型输出格式或者为模型设置角色。本章中将介绍如何使用提示词工程获得专属于你的猫娘女友模板格式"介绍一下和{name}相关的事"print(prompt_template.format(name="唱、跳、rap、篮球"))输出效果从结果上看,自定义模板就是一个单纯的字符串,每次他的内容随着每次输入的值的变化而变化介绍一下和唱、跳、rap、篮球相关的事模板应用实例为了防止内容单调,这里为猫娘女友增添了一些设定。

2025-02-10 13:38:54 412

原创 玩转大语言模型——本地部署deepseek R1和本地数据库的小白教程(Ollama+AnythingLLM)

最近deepseek模型可谓是非常火爆,尤其是deepseek R1的逻辑能力,并且deepseek R1还开放了多种参数大小的蒸馏模型,使得本地部署成为了可能。在本系列中上一篇介绍了在本地部署deepseek R1的用法,本篇将介绍如何部署本地大模型的数据库。

2025-02-05 18:33:52 3386 2

原创 玩转大语言模型——本地部署带聊天界面deepseek R1的小白教程(ollama+chatbox)

最近deepseek模型可谓是非常火爆,无论是逻辑能力还是知识层次都取得了很大的技术进步,最重要的是他完全开源,并且deepseek R1还开放了多种参数大小的蒸馏模型,使得本地部署成为了可能。经过实测,如果仅用于聊天消遣,不给模型较难的任务,1.5b的模型就已经有了一个很好的表现了,本章中将从零开始介绍本地部署deepseek R1,并且安装相关的可视化软件以供调用本地模型。

2025-01-31 21:41:41 3680

使用opencv-python实现的基于模板匹配的银行卡号识别项目

使用opencv-python实现的基于模板匹配的银行卡号识别项目,有详细的代码解释过程

2023-01-04

柠檬质量分类数据集(Lemon Quality)

可以用于区分好柠檬和坏柠檬的数据集,其中包含好柠檬、坏柠檬、拍照背景图片,可以用于区分柠檬好坏

2022-11-06

车标分类数据集(car logo datasets)

用于图像分类的车标分类数据集

2022-11-06

用于狗狗表情识别的数据集

一个用于狗狗表情识别的数据集,包含愤怒,开心,放松,难过四种标签,可以用来训练用于识别狗狗表情的深度学习模型,适用于深度学习或图像处理的学习者

2022-11-04

基于tensorflow的手语检测

1. 使用的模型是centernet 2. 使用predict.py可以进行预测 3. 使用的环境是tensorflow 4. 建议安装cuda使用 5. 该检测容易误检人脸,建议演示时避免人脸靠得太近 6. 根据手语对照表可以使用项目检测相应的手语

2022-11-04

python实现含UI界面和数据库的学生成绩管理系统.zip

Python实现的一个使用PyQt5写的带UI界面的学生成绩管理系统,并且可以链接MySQL数据库

2022-11-04

python图片批量去重脚本.zip

基于opencv写了一个图片批量去重的python脚本,可以对比图片相似度并且保留相似但是更为清晰的图片

2022-11-04

人脸检测和动漫脸检测剪裁脚本.zip

一个用于批量识别并裁剪文件夹中所有图片中出现的人脸或者出现过的动漫脸的轻量级python脚本,可以将自己收集的含有人脸的图片直接裁剪出来,可以供后续的人脸识别做准备。注:文件夹路径分隔要用“/”而不是“\”,可私信讨论

2022-11-04

可以用于将图片转换为扫描样式的图片二值化工具

可以用于将图片转换为扫描样式的图片二值化工具

2022-11-04

包 子 阳 智 能 优 化 算 法 及 matlab 实 例 源 代 码

包 子 阳 智 能 优 化 算 法 及 matlab 实 例 源 代 码

2022-05-25

python实现用于图片拟合的免疫遗传算法

为了快速理解免疫遗传算法,以图片拟合为背景,使用python实现免疫遗传算法的手动实现,详细解析请查看我的博客:https://editor.csdn.net/md?not_checkout=1&articleId=124096240

2022-04-11

交叉进化算法python手动实现

python手动实现交叉进化算法对于函数最值的求解

2022-03-09

python实现使用遗传算法进行图片拟合

python手动实现使用遗传算法进行图片拟合,有利于对智能优化算法的理解和实现,详细的解释和介绍可参照我的博客 https://blog.csdn.net/DuLNode/article/details/123023288

2022-02-21

飞桨实现卷积神经网络手写数字识别.ipynb

使用飞桨实现手写数字识别

2021-12-06

无监督学习-kmeans聚类算法及手动实现jupyter代码.ipynb

无监督学习-kmeans聚类算法及手动实现jupyter代码.ipynb

2021-12-03

rarlinux-5.3.0.tar.gz

rarlinux-5.3.0.tar.gz

2021-12-09

telnet-server-0.17-47.el6.x86_64.rpm

telnet-server-0.17-47.el6.x86_64.rpm

2021-12-09

Linux下Shell编程.ppt

Shell的简介以及Linux使用shell编程的指令及命令

2021-12-07

使用飞桨(Paddle)构建单层神经网络.ipynb

使用飞桨(Paddle)构建单层神经网络.ipynb

2021-12-04

python实现梯度下降.ipynb

用python手动实现梯度下降

2021-12-04

甲状腺癌复发数据集(RAI 治疗后的甲状腺癌数据集,分析性别、年龄和风险因素)

该数据集侧重于放射性碘 (RAI) 治疗后的甲状腺癌复发情况。它包含 383 份患者记录,具有 13 个关键属性,包括年龄、性别、癌症分期、病理类型、风险分类、治疗反应和复发状态。这些数据对于预测癌症复发、了解风险因素和评估治疗结果很有价值。

2025-04-15

注释超声肝脏图像数据集

该数据集包含一组带注释的肝脏超声图像,旨在帮助开发用于肝脏分析、分割和疾病检测的计算机视觉模型。注释包括肝脏和肝脏肿块区域的轮廓,以及良性、恶性和正常病例的分类。此数据集提供肝脏的超声图像和详细的注释。注释突出显示肝脏本身和存在的任何肝脏肿块区域。这些图像分为三类: 良性:显示良性肝脏状况的图像。 恶性:显示肝脏恶性病变的图像。 正常:健康肝脏的图像。

2025-04-15

IMDb 电影类型分类数据集

movies_overview.csv: title:电影标题 overview:电影的简要说明或概要 genre_ids:一个或多个流派标识符(可以是多标签) movies_genres.csv: id:流派标识符 name:对应的流派名称

2025-04-15

电动汽车保有量数据集(来自美国政府的电动汽车数量数据)

此数据集提供了有关目前在美国注册的电池电动汽车 (BEV) 和插电式混合动力电动汽车 (PHEV) 的详细信息,特别是通过华盛顿州许可部 (DOL)。该数据集包括这些电动汽车的各种属性,例如品牌、型号、注册年份以及反映华盛顿州电动汽车采用增长趋势的其他相关数据。它提供了有关道路上电动汽车类型及其地理分布的宝贵见解,并帮助跟踪该州电动汽车使用情况的演变。对于有兴趣研究美国电动汽车市场的政策制定者、研究人员和组织,以及开发基础设施和服务以支持日益增长的电动汽车需求的人来说,该数据集是一个有用的资源

2025-04-15

土壤污染和相关健康影响数据集

该数据集包含 3000 条合成记录,用于模拟土壤污染和相关疾病的真实场景。它捕获环境、农业和人口统计变量,以分析土壤污染与人类健康结果之间的相关性。数据是使用概率模型和领域知识生成的,使其适用于探索性分析、机器学习和环境健康研究。 主要功能包括: 土壤中的污染物类型和浓度 土壤和天气条件 农业实践和附近的行业分布 报告的疾病类型、严重程度和症状 受影响的人口统计细分 缓解措施和案例解决方案 它非常适合用于数据科学项目、公共卫生研究、环境建模和预测分析。

2025-04-15

沃尔玛股票数据(2000年至2025年)

Walmart Inc. 是一家全球性的美国零售集团,主导着美国市场的大部分。沃尔玛在财富全球 500 强全球最高收入企业名单中一直名列前茅。 截至 2025 年 3 月,沃尔玛的市值为 6795 亿美元。这使得沃尔玛成为全球市值最有价值的公司之一。市值,通常称为市值,是上市公司流通股的总市值,通常用于衡量公司的价值。

2025-04-15

骨折数据集 – 胫骨和腓骨

该数据集旨在开发用于胫骨和腓骨骨折分类和定位的机器学习模型。它包含格式的 X 射线图像,其中一些图像已由埃塞俄比亚 Gondar 大学的医学专家验证,而其他图像则来自公共存储库。 该数据集旨在支持: 自动诊断胫骨和腓骨骨折 深度学习在骨科放射学中的应用 医学影像研究和临床决策支持 所有图像均为 PNG 格式,并经过图像增强和增强,以提高机器学习任务的质量和可用性。 包含的文件: 胫骨和腓骨的 PNG 格式 X 射线图像集合 图片来自: 贡达大学转诊医院 MURA(肌肉骨骼 X 光片)数据集 总大小:319 MB

2025-04-15

300IDUO卡mindie镜像百度云

适用于300IDUO的mindie环境的Docker镜像,已上传到百度云

2025-03-12

GraphRAG输出中文提示词

在使用GraphRAG时发现,生成的结果均为英文,并不能直接使用。 经历了对于提示词的逐步调整,总算是整理出来了一套可以输出中文知识图谱的提示词 使用方式:解压后替换掉原先的提示词文件即可

2025-02-18

OpenCV、Python和scikit-learn进行智能图像处理-资料以及代码.rar

OpenCV、Python和scikit-learn进行智能图像处理——资料以及代码

2023-04-05

PyQT5-代码实例库

个人在使用PyQt的过程中遇到使用过的一些PyQt的各类小demo 按照控件和功能用法分好类了,方便查找和学习

2024-04-13

加州房价数据集(california-house-prices)

加州房价数据集,可以用于数据分析、机器学习和深度学习的学习使用

2023-03-09

rafdb表情识别数据集

用于表情识别的rafdb数据集

2023-02-23

python学生成绩管理系统合集.zip

其中包含一个实验报告和三个版本的学生成绩管理系统 三个版本分别为 tkinter界面 PyQt5界面 PyQt5界面+MySql

2023-02-17

机器学习资料、实验代码及报告.zip

学习机器学习过程中的资料、代码和实验报告,可供学习使用 其中包括 实验1-机器学习入门 实验2-KNN分类 实验3-贝叶斯分类上 实验3-贝叶斯分类下 实验4-决策树分类器上 实验5-支持向量 实验6-线性回归 实验7-聚类分析 实验8-降维分析 实验报告 机器学习实战 机器学习模型分类汇总

2023-02-17

三国人物关系词频分析词云图.zip

三国人物关系的词云图,通过从txt文件中读出文本进行分词、数据处理、词频分析获取词频与词云图

2023-02-17

航拍语义分割(附数据集).zip

使用航拍数据集进行的语义分割操作,其中有两种语义分割的方法,有早期的U-net模型,也有较为新的deeplabv3+模型,其中包含数据集,代码形式为jupyter notebook,便于观察数据的变化

2023-02-17

用于语义分割的航拍数据集

数据集包含6个类别: 1、Building: #3C1098 2、Land (unpaved area): #8429F6 3、Road: #6EC1E4 4、Vegetation: #FEDD3A 5、Water: #E2A929 6、Unlabeled: #9B9B9B

2023-02-17

手写数学符号识别项目-Handwritten-math-symbols-recognition.zip

数据集来自:https://www.kaggle.com/datasets/xainano/handwrittenmathsymbols 由82个类别,共计30万张图片,重写数据加载器解决了在笔记本上数据过大难以加载的问题,使用了现代常用的CNN网络如VGG,googleNet,resNet等进行模型的训练

2023-02-17

fashionMNIST数据集

由于学习pytorch时出现这个数据集的下载问题,所以在这里免费分享一下,如果对您有帮助希望能给我一个关注,谢谢

2023-01-07

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除