Description
有一个神奇的口袋,总的容积是40,用这个口袋可以变出一些物品,这些物品的总体积必须是40。John现在有n个想要得到的物品,每个物品的体积分别是a1,a2……an。John可以从这些物品中选择一些,如果选出的物体的总体积是40,那么利用这个神奇的口袋,John就可以得到这些物品。现在的问题是,John有多少种不同的选择物品的方式。
Input
输入的第一行是正整数n (1 <= n <= 20),表示不同的物品的数目。接下来的n行,每行有一个1到40之间的正整数,分别给出a1,a2……an的值。
Output
有一个神奇的口袋,总的容积是40,用这个口袋可以变出一些物品,这些物品的总体积必须是40。John现在有n个想要得到的物品,每个物品的体积分别是a1,a2……an。John可以从这些物品中选择一些,如果选出的物体的总体积是40,那么利用这个神奇的口袋,John就可以得到这些物品。现在的问题是,John有多少种不同的选择物品的方式。
Input
输入的第一行是正整数n (1 <= n <= 20),表示不同的物品的数目。接下来的n行,每行有一个1到40之间的正整数,分别给出a1,a2……an的值。
Output
输出不同的选择物品的方式的数目。
思路:背包的思路即可。
#include <cstdio>
#include <cstring>
#include <vector>
#include <iostream>
#include <cstdlib>
#include <cmath>
#include <algorithm>
#define INF 0x3fffffff
using namespace std;
int s[25],dp[45];
int n;
int main(){
int i,j;
scanf("%d",&n);
for(i = 1;i<=n;i++)
scanf("%d",&s[i]);
memset(dp, 0, sizeof(dp));
dp[0] = 1;
for(i = 1;i<=n;i++)
for(j = 40;j>=s[i];j--)
dp[j]+=dp[j-s[i]];
printf("%d\n",dp[40]);
}