题意:给定一个序列,求其最短非子序列的长度。
分析:我们把序列划分为若干个区间,每个区间都包含(1~k)这些数字。我们使划分的区间尽量多,方法就是从左到右一旦满足了包含所有字符,则立即停止该区间,从下一位开始一个新的区间。答案就是划分的区间数+1。
简单证明一下:对于一个有x个区间的序列,一定包含了所有长度为x的序列。因为,对于任意一个长度为x的序列,只需要依次在x个区间中取出其对应位的元素即可组成。
分析:我们把序列划分为若干个区间,每个区间都包含(1~k)这些数字。我们使划分的区间尽量多,方法就是从左到右一旦满足了包含所有字符,则立即停止该区间,从下一位开始一个新的区间。答案就是划分的区间数+1。
简单证明一下:对于一个有x个区间的序列,一定包含了所有长度为x的序列。因为,对于任意一个长度为x的序列,只需要依次在x个区间中取出其对应位的元素即可组成。
对于一个最多有x个区间的序列,一定不能构成所有的长度为x+1的序列。因为只需要取每个区间的最后一位,构成一个长度为x的序列,在最后加上一个刨除前x个区间后的剩余部分所不具有的字符即可。这个长度为x+1的序列一定不是其子序列。因为每个区间的最后一个元素都是在该区间中唯一的(当一个区间已经搜集了k-1个元素之后,一旦遇到最后一个元素就停止了,所以最后一个元素只有一个),所以这个序列前x个元素在长串中的匹配位置是固定的,只能是每个区间的最后一个元素(无法左移)。这样前x个元素耗尽了长串的x个区间,第x+1个元素就无法构成了(http://www.cnblogs.com/rainydays/archive/2011/06/08/2075520.html)
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <cstdlib>
using namespace std;
#define clc(s,t) memset(s,t,sizeof(s))
#define INF 0x3fffffff
#define N 100005
int flag[N];
int main(){
int n,k,sum=0,a,res=0;
clc(flag, 0);
scanf("%d %d",&n,&k);
for(int i = 1;i<=n;i++){
scanf("%d",&a);
if(!flag[a]){
flag[a] = 1;
sum++;
}
if(sum == k){
res++;
sum = 0;
memset(flag, 0, sizeof(int)*(k+1));
}
}
printf("%d\n",res+1);
return 0;
}