poj 1989 数学(求一个序列的最短非子序列长)

博客探讨了如何确定一个最多有x个区间的序列,不能构成所有长度为x+1的序列的原因。通过分析序列中每个区间的独特性质,得出结论这样的序列一定不是其子序列,因为它强制固定了长序列中某些位置的元素。这种方法揭示了序列匹配的限制和非子序列长度的计算策略。
摘要由CSDN通过智能技术生成
题意:给定一个序列,求其最短非子序列的长度。

分析:我们把序列划分为若干个区间,每个区间都包含(1~k)这些数字。我们使划分的区间尽量多,方法就是从左到右一旦满足了包含所有字符,则立即停止该区间,从下一位开始一个新的区间。答案就是划分的区间数+1。
简单证明一下:对于一个有x个区间的序列,一定包含了所有长度为x的序列。因为,对于任意一个长度为x的序列,只需要依次在x个区间中取出其对应位的元素即可组成。

对于一个最多有x个区间的序列,一定不能构成所有的长度为x+1的序列。因为只需要取每个区间的最后一位,构成一个长度为x的序列,在最后加上一个刨除前x个区间后的剩余部分所不具有的字符即可。这个长度为x+1的序列一定不是其子序列。因为每个区间的最后一个元素都是在该区间中唯一的(当一个区间已经搜集了k-1个元素之后,一旦遇到最后一个元素就停止了,所以最后一个元素只有一个),所以这个序列前x个元素在长串中的匹配位置是固定的,只能是每个区间的最后一个元素(无法左移)。这样前x个元素耗尽了长串的x个区间,第x+1个元素就无法构成了(http://www.cnblogs.com/rainydays/archive/2011/06/08/2075520.html)

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <cstdlib>
using namespace std;
#define clc(s,t) memset(s
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值