cite:Zhu, P., Wang, Q., Wang, Y., Li, J., & Hu, Q. (2024). Every Node Is Different: Dynamically Fusing Self-Supervised Tasks for Attributed Graph Clustering. Proceedings of the AAAI Conference on Artificial Intelligence, 38(15), 17184-17192. https://doi.org/10.1609/aaai.v38i15.29664
代码地址:https://github.com/q086/DyFSS
摘要
属性图聚类是一种无监督任务,其目标是将节点划分为不同的组。自监督学习(Self-Supervised Learning, SSL)在处理这一任务中展现出了巨大的潜力,一些最新研究通过同时学习多个SSL任务进一步提升了性能。然而,目前不同SSL任务对所有图节点的权重设置是统一的。然而,作者观察到,对于某些邻居分布在不同组的图节点,SSL任务的重要性需要显著不同的权重分配。
在本文中,我们提出了一种动态学习不同节点SSL任务权重并融合从不同SSL任务中学得的嵌入的创新方法,以提升聚类性能。我们设计了一种新的图聚类方法,称为动态融合自监督学习(Dynamically Fusing Self-Supervised Learning, DyFSS)。具体来说,DyFSS通过一个门控网络为不同SSL任务提取的特征分配不同的权重,并进行融合。为了有效地学习门控网络,作者设计了一种结合伪标签和图结构的双层自监督策略。
在五个数据集上的广泛实验表明,DyFSS在准确率指标上比当前最先进的多任务SSL方法性能最高提升了8.66%。
引言
属性图聚类(Attributed Graph Clustering, AGC)的目标是在没有明确监督的情况下,将图的节点划分为多个组。AGC的一个关键挑战是缺乏适当的监督信号(Zhu 等, 2022;Mrabah 等, 2023)。自监督学习(Self-Supervised Learning, SSL)通过从数据中获取监督信息,已被证明在获得良好性能方面具有极大帮助(Wu 等, 2023)。
许多关于AGC中SSL方法的研究已被提出。生成式学习方法(Pan 等, 2018;Hou 等, 2022)旨在通过重构图结构或掩码的节点特征来学习节点表示。对比学习方法通过最大化正样本之间的