cite:
@inproceedings{li2024contrastive,
title={Contrastive deep nonnegative matrix factorization for community detection},
author={Li, Yuecheng and Chen, Jialong and Chen, Chuan and Yang, Lei and Zheng, Zibin},
booktitle={ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
pages={6725--6729},
year={2024},
organization={IEEE}
}
代码地址:https://github.com/6lyc/CDNMF.git
摘要
最近,非负矩阵分解(NMF)因其良好的可解释性被广泛应用于社区检测。然而,现有的基于NMF的方法存在以下三个问题:
- 它们直接将原始网络转换为社区成员空间,因此难以捕捉层次信息;
- 它们通常只关注网络的拓扑结构,而忽略节点属性;
- 它们难以学习社区检测所需的全局结构信息。
因此,作者提出了一种新的社区检测算法,称为对比深度非负矩阵分解(CDNMF)。首先,作者通过加深NMF模型来增强其信息提取能力。随后,受对比学习的启发,作者创新性地将网络拓扑和节点属性构建为两种对比视图。此外,引入了去偏负采样层,并在社区层面学习节点相似性,从而提高模型在社区检测中的适用性。
作者在三个公共真实图数据集上进行了实验,结果表明,所提出的模型相较于最新的方法取得了更优的效果。
1引言
社区检测(Community Detection, CD)是复杂网络分析中的一项基础任务,其目标是将网络划分为多个子结构,每个子结构对应一个社区。有效的划分需要同一社区内的节点之间具有密集连接,而不同社区节点之间的连接则较为稀疏【1】。挖掘社区结构是揭示和理解复杂网络系统组织原则和运行机制的关键。例如,在社交网络中,平台通过检测不同的用户社区来优化好友推荐和广告投放。
过去的二十年中,许多经典的社区检测算法被提出,例如模块度(modularity)【2】、传导性(conductance)【3】和持久性(permanence)【4】。然而,这些方法通常只能将每个节点分配到一个社区,