代码地址:https://github.com/labomics/scDAC
动机: 单细胞RNA测序(scRNA-seq)数据的聚类分析是揭示细胞异质性的关键步骤。为了从scRNA-seq数据中发现异质性细胞类型,已有许多聚类方法被提出。然而,如何在大规模scRNA-seq数据中实现适应性聚类,并准确反映内在生物学特性的聚类数量,仍然是一个巨大的挑战。
结果: 在此,作者提出了一种单细胞深度适应性聚类(scDAC)模型,通过结合自编码器(AE)和狄利克雷过程混合模型(DPMM)。通过联合优化AE和DPMM的模型参数,scDAC能够实现具有准确聚类数量的适应性聚类,应用于scRNA-seq数据。作者在五个具有不同细胞类型数量的子样本数据集上验证了scDAC的性能,并将其与15种广泛使用的聚类方法在九个scRNA-seq数据集上的表现进行了比较。结果表明,scDAC能够适应性地找到准确的细胞类型或亚型数量,并优于其他方法。此外&#